Modal Contribution Coefficients in Bridge Condition Evaluation

Impact modal testing combined with finite element (FE) analyses is currently being used to evaluate the condition of steel bridges in the state of Ohio. Using modal testing techniques, it is relatively easy to measure the dynamic response of bridges, including mode shapes, frequencies, and modal sca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of bridge engineering 2005-03, Vol.10 (2), p.169-178
Hauptverfasser: Li, Zhengsheng, Swanson, James A, Helmicki, Arthur J, Hunt, Victor J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Impact modal testing combined with finite element (FE) analyses is currently being used to evaluate the condition of steel bridges in the state of Ohio. Using modal testing techniques, it is relatively easy to measure the dynamic response of bridges, including mode shapes, frequencies, and modal scaling factors. These responses are compared to the results of the FE analyses and the model is iteratively updated until a good agreement is obtained. After a good agreement between experimental and analytical results has been achieved, the FE model is used to obtain stresses that are used to load rate the bridge. During the iterative calibration process, several quantities, including the fundamental mode shapes and frequencies, are used to evaluate the accuracy of the FE model. Since each mode shape plays a different role in the dynamic behavior of the structure, a more efficient calibration routine can be achieved if more emphasis is placed on obtaining good matches for the modes that are most influential. The aim of this paper is to develop a quantitative measure of the contribution of different modes to the overall dynamic response of a structure. The proposed measure, a series of contribution coefficients, is used to identify which modes are most critical in the process of modal testing and FE model calibration. Several applications of the contribution coefficients are identified.
ISSN:1084-0702
1943-5592
DOI:10.1061/(ASCE)1084-0702(2005)10:2(169)