Physiological response mechanism of heavy metal‐resistant endophytic fungi isolated from the roots of Polygonatum kingianum

This study aims to evaluate the tolerance of endophytic fungi isolated from the fibrous roots of Polygonatum kingianum to arsenic (As) and cadmium (Cd) and their physiological response mechanisms. Five isolated strains were obtained with EC50 values for As(V) ranging from 421 to 1281 mg/L, while the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental microbiology reports 2023-12, Vol.15 (6), p.568-581
Hauptverfasser: Cao, Guan‐Hua, Li, Xiao‐Gang, Zhang, Chen‐Rui, Xiong, Yi‐Ran, Li, Xue, Li, Tong, He, Sen, Cui, Zheng‐Guo, Yu, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aims to evaluate the tolerance of endophytic fungi isolated from the fibrous roots of Polygonatum kingianum to arsenic (As) and cadmium (Cd) and their physiological response mechanisms. Five isolated strains were obtained with EC50 values for As(V) ranging from 421 to 1281 mg/L, while the other three strains tolerated Cd(II) with an EC50 range of 407–1112 mg/L. Morphological and molecular identification indicated that these eight strains were Cladosporium spp. belonging to dark septate endophytes (DSEs). The contents of metal ions in mycelium sharply increased, reaching 38.87 mg/kg for strain MZ‐11 under As(V) stress and 0.33 mg/kg for fungus PR‐2 under Cd(II). The physiological response revealed that the biomass decreased with increasing concentrations of As(V) or Cd(II), and the activity of superoxide dismutase significantly improved under the corresponding EC50‐concentration As/Cd of the strains, as well as the contents of antioxidant substances, including metallothionein, glutathione, malondialdehyde, melanin, and proline. Taken together, the filamentous fungi of Cladosporium spp. accounted for a high proportion of fungi isolated from the fibrous roots of P. kingianum and had a strong capacity to tolerate As(V) or Cd(II) stress by improving antioxidase activities and the content of antioxidant substances, and immobilization of metal ions in hyphae. Some DSEs isolated from the fibrous roots of P. kingianum had a strong capacity to tolerate As(V) or Cd(II) stress by improving antioxidase activities and the contents of antioxidant substances, and immobilization of metal ions in cell walls, thus scavenging free radical and reducing oxidative damage.
ISSN:1758-2229
1758-2229
DOI:10.1111/1758-2229.13194