Reconciling nonlinear dissipation with the bilinear model of two Brownian particles

The Brownian motion of a single particle is a paradigmatic model of the nonequilibrium dynamics of dissipative systems. In the system-plus-reservoir approach, one can derive the particle's equations of motion from the reversible dynamics of the system coupled to a bath of oscillators representi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2023-01, Vol.107 (1-1), p.014107-014107, Article 014107
Hauptverfasser: Goettems, Elisa I, Afonso, Ricardo J S, Soares-Pinto, Diogo O, Valente, Daniel
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Brownian motion of a single particle is a paradigmatic model of the nonequilibrium dynamics of dissipative systems. In the system-plus-reservoir approach, one can derive the particle's equations of motion from the reversible dynamics of the system coupled to a bath of oscillators representing its thermal environment. However, extending the system-plus-reservoir approach to multiple particles in a collective environment is not straightforward, and conflicting models have been proposed to that end. Here, we set out to reconcile some aspects of the nonlinear and the bilinear models of two Brownian particles. We show how the nonlinear dissipation originally derived from exponential system-reservoir couplings can alternatively be obtained from the bilinear Lagrangian, with a modified spectral function that explicitly depends on the distance between the particles. We discuss applications to the contexts of anomalous diffusion and of hydrodynamic interactions. Our results thus broaden the applicability of the bilinear model.
ISSN:2470-0045
2470-0053
DOI:10.1103/PhysRevE.107.014107