The genome sequence of the Champagne Epernay Geisenheim wine yeast reveals its hybrid nature

Abstract Lager yeasts are hybrids between Saccharomyces cerevisiae and S. eubayanus. Wine yeast biodiversity, however, has only recently been discovered to include besides pure S. cerevisiae strains also hybrids between different Saccharomyces yeasts as well as introgressions from non-Saccharomyces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:FEMS yeast research 2023-01, Vol.23
Hauptverfasser: Bernardi, Beatrice, Michling, Florian, Muno-Bender, Judith, Matti, Katrin, Wendland, Jürgen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Lager yeasts are hybrids between Saccharomyces cerevisiae and S. eubayanus. Wine yeast biodiversity, however, has only recently been discovered to include besides pure S. cerevisiae strains also hybrids between different Saccharomyces yeasts as well as introgressions from non-Saccharomyces species. Here, we analysed the genome of the Champagne Epernay Geisenheim (CEG) wine yeast. This yeast is an allotetraploid (4n − 1) hybrid of S. cerevisiae harbouring a substantially reduced S. kudriavzevii genome contributing only 1/3 of a full genome equivalent. We identified a novel oligopeptide transporter gene, FOT4, in CEG located on chromosome XVI. FOT genes were originally derived from Torulaspora microellipsoides and FOT4 arose by non-allelic recombination between adjacent FOT1 and FOT2 genes. Fermentations of CEG in Riesling and Müller-Thurgau musts were compared with the S. cerevisiae Geisenheim wine yeast GHM, which does not carry FOT genes. At low temperature (10°C), CEG completed fermentations faster and produced increased levels of higher alcohols (e.g. isoamyl alcohol). At higher temperature (18°C), CEG produced higher amounts of the pineapple-like alkyl esters i-butyric and propionic acid ethyl esters compared to GHM. The hybrid nature of CEG thus provides advantages in grape must fermentations over S. cerevisiae wine yeasts, especially with regard to aroma production. This article reveals the hybrid Saccharomyces cerevisiae and S. kudriavzevii genome of the CEG wine yeast and analyses its fermentation properties.
ISSN:1567-1364
1567-1356
1567-1364
DOI:10.1093/femsyr/foad033