Psychometric Properties and Assessment of Knowledge, Attitude, and Practice Towards ChatGPT in Pharmacy Practice and Education: a Study Protocol

ChatGPT represents an advanced conversational artificial intelligence (AI), providing a powerful tool for generating human-like responses that could change pharmacy prospects. This protocol aims to describe the development, validation, and utilization of a tool to assess the knowledge, attitude, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of racial and ethnic health disparities 2024-08, Vol.11 (4), p.2284-2293
Hauptverfasser: Mohammed, Mustapha, Kumar, Narendar, Zawiah, Mohammed, Al-Ashwal, Fahmi Y., Bala, Auwal Adam, Lawal, Basira Kankia, Wada, Abubakar Sadiq, Halboup, Abdulsalam, Muhammad, Surajuddeen, Ahmad, Rabbiya, Sha’aban, Abubakar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ChatGPT represents an advanced conversational artificial intelligence (AI), providing a powerful tool for generating human-like responses that could change pharmacy prospects. This protocol aims to describe the development, validation, and utilization of a tool to assess the knowledge, attitude, and practice towards ChatGPT (KAP-C) in pharmacy practice and education. The development and validation process of the KAP-C tool will include a comprehensive literature search to identify relevant constructs, content validation by a panel of experts for items relevancy using content validity index (CVI) and face validation by sample participants for items clarity using face validity index (FVI), readability and difficulty index using the Flesch-Kincaid Readability Test, Gunning Fog Index, or Simple Measure of Gobbledygook (SMOG), assessment of reliability using internal consistency (Cronbach’s alpha), and exploratory factor analysis (EFA) to determine the underlying factor structures (eigenvalues, scree plot analysis, factor loadings, and varimax). The second phase will utilize the validated KAP-C tool to conduct KAP surveys among pharmacists and pharmacy students in selected low- and middle-income countries (LMICs) (Nigeria, Pakistan, and Yemen). The final data will be analyzed descriptively using frequencies, percentages, mean (standard deviation) or median (interquartile range), and inferential statistics like Chi-square or regression analyses using IBM SPSS version 28. A  p
ISSN:2197-3792
2196-8837
2196-8837
DOI:10.1007/s40615-023-01696-1