Estimating the parameters of a dependent model and applying it to environmental data set

In this paper, a new dependent model is introduced. The model is motivated using the structure of series-parallel systems consisting of two series-parallel systems with a random number of parallel sub-systems that have fixed components connected in series. The dependence properties of the proposed m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics 2023-03, Vol.50 (4), p.984-1016
Hauptverfasser: Mohtashami-Borzadaran, V., Amini, M., Ahmadi, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a new dependent model is introduced. The model is motivated using the structure of series-parallel systems consisting of two series-parallel systems with a random number of parallel sub-systems that have fixed components connected in series. The dependence properties of the proposed model are studied. Two estimation methods, namely the moment method, and the maximum likelihood method are applied to estimate the parameters of the distributions of the components based on observing the system's lifetime data. A Monte Carlo simulation study is used to evaluate the performance of the estimators. Two real data sets are used to illustrate the proposed method. The results are useful for researchers and practitioners interested in analyzing bivariate data related to extreme events.
ISSN:0266-4763
1360-0532
DOI:10.1080/02664763.2021.2006613