An adapted liver perfusion in a shark species, Squalus suckleyi : investigation of energy mobilization

We describe a viable liver perfusion in a shark species for the first time as determined by oxygen consumption and hormone-mediated changes in hemodynamics (angiotensin II, ANG II). In addition, removal of major energy metabolites confirms hepatic ketone [3-hydroxybutyrate (3-HB)] production by an e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Regulatory, integrative and comparative physiology integrative and comparative physiology, 2023-11, Vol.325 (5), p.R534-R545
Hauptverfasser: Schoen, Alexandra N., Weinrauch, Alyssa M., Bouyoucos, Ian A., Anderson, W. Gary
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe a viable liver perfusion in a shark species for the first time as determined by oxygen consumption and hormone-mediated changes in hemodynamics (angiotensin II, ANG II). In addition, removal of major energy metabolites confirms hepatic ketone [3-hydroxybutyrate (3-HB)] production by an elasmobranch liver. Perfusion with heterologous insulin and homologous glucagon did not cause changes in glucose balance, however, possibly demonstrating differences in glucose metabolism in this taxon as compared with more derived vertebrates. The liver is an essential energy storage organ in vertebrates. In teleosts and elasmobranchs, previous studies examining hepatic energy balance have used isolated hepatocytes. Although these studies have been informative, the high-fat content in the elasmobranch liver limits isolation of hepatocytes and therefore the utility of this method to understand hepatic metabolic processes. In the present study, we developed an in situ liver perfusion in the North Pacific spiny dogfish Squalus suckleyi. Perfusions were conducted by cannulating the hepatic portal vein (inflowing cannulation) and the sinus venosus through the heart (outflowing cannulation). Changes in major elasmobranch metabolites (glucose and 3-hydroxybutarate [3-HB]) were determined by the arterial (inflow)-venous (outflow) difference in metabolite concentration. Liver preparations were considered viable due to consistent oxygen consumption over 3 h and the maintenance of predictable vasoconstriction following administration of homologous 10 −7 M angiotensin II (ANG II). Removal and reintroduction from the perfusate of metabolites showed endogenous 3-HB production in the isolated perfused livers but did not affect glucose balance. However, the arterial-venous difference of both metabolites did not change following perfusion with heterologous insulin and homologous glucagon, which may be due to the glucose intolerant nature of elasmobranchs. Ultimately, we show the viability of this perfusion for the investigation of hepatic energy mobilization in sharks. NEW & NOTEWORTHY We describe a viable liver perfusion in a shark species for the first time as determined by oxygen consumption and hormone-mediated changes in hemodynamics (angiotensin II, ANG II). In addition, removal of major energy metabolites confirms hepatic ketone [3-hydroxybutyrate (3-HB)] production by an elasmobranch liver. Perfusion with heterologous insulin and homologous glucagon did not cause changes
ISSN:0363-6119
1522-1490
DOI:10.1152/ajpregu.00132.2023