Influence of nano-LDHs on char formation and fire-resistant properties of flame-retardant coating
Flame-retardant nano-coatings were prepared by adding flame-retardant nano-concentrates to APP/PER/EN coating. Dispersion morphology and stability principle of nano-size magnesium aluminum-layered double hydroxides (nano-LDHs) have been studied by using transmission electron microscopy (TEM). Relati...
Gespeichert in:
Veröffentlicht in: | Progress in organic coatings 2005-05, Vol.53 (1), p.29-37 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Flame-retardant nano-coatings were prepared by adding flame-retardant nano-concentrates to APP/PER/EN coating. Dispersion morphology and stability principle of nano-size magnesium aluminum-layered double hydroxides (nano-LDHs) have been studied by using transmission electron microscopy (TEM). Relation of added amount of nano-concentrates in flame-retardant coating to flame-retardant properties for APP/PER/EN system has been studied by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), differential thermal analysis (DTA), thermogravimetry (TG) and fire protection test. It was indicated that nano-LDHs could catalyze the esterification reaction between ammonium polyphosphate and pentaerythritol, and IPN network formed by nano-size thermal-decomposed products of LDH could efficiently enhance char formation and structure of char layer. Only specific content (1.5%) of nano-LDHs in flame-retardant coating could efficiently improve its char layer structure and fire-resistant properties. Nano-LDHs (1.5%) greatly improve mechanical properties (bonding strength, bending resistance and resistance to freeze–thaw cycle) of flame-retardant coating. |
---|---|
ISSN: | 0300-9440 1873-331X |
DOI: | 10.1016/j.porgcoat.2005.01.004 |