Frictionless multiphasic interface for near-ideal aero-elastic pressure sensing

Conventional pressure sensors rely on solid sensing elements. Instead, inspired by the air entrapment phenomenon on the surfaces of submerged lotus leaves, we designed a pressure sensor that uses the solid–liquid–liquid–gas multiphasic interfaces and the trapped elastic air layer to modulate capacit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2023-11, Vol.22 (11), p.1352-1360
Hauptverfasser: Cheng, Wen, Wang, Xinyu, Xiong, Ze, Liu, Jun, Liu, Zhuangjian, Jin, Yunxia, Yao, Haicheng, Wong, Tak-Sing, Ho, John S., Tee, Benjamin C. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Conventional pressure sensors rely on solid sensing elements. Instead, inspired by the air entrapment phenomenon on the surfaces of submerged lotus leaves, we designed a pressure sensor that uses the solid–liquid–liquid–gas multiphasic interfaces and the trapped elastic air layer to modulate capacitance changes with pressure at the interfaces. By creating an ultraslippery interface and structuring the electrodes at the nanoscale and microscale, we achieve near-friction-free contact line motion and thus near-ideal pressure-sensing performance. Using a closed-cell pillar array structure in synergy with the ultraslippery electrode surface, our sensor achieved outstanding linearity ( R 2 = 0.99944 ± 0.00015; nonlinearity, 1.49 ± 0.17%) while simultaneously possessing ultralow hysteresis (1.34 ± 0.20%) and very high sensitivity (79.1 ± 4.3 pF kPa −1 ). The sensor can operate under turbulent flow, in in vivo biological environments and during laparoscopic procedures. We anticipate that such a strategy will enable ultrasensitive and ultraprecise pressure monitoring in complex fluid environments with performance beyond the reach of the current state-of-the-art. Solid-state pressure sensors have performance limitations in liquid environments. Here, the authors design a pressure sensor using solid–liquid–liquid–gas multiphasic interfaces where a trapped air layer modulates capacitance changes with pressure to achieve near-friction-free contact line motions for near-ideal pressure sensing.
ISSN:1476-1122
1476-4660
DOI:10.1038/s41563-023-01628-8