Deciphering the landscape of transcriptional heterogeneity across cancer

By integrating scRNA-seq datasets across 77 studies and 24 cancer types, in Nature, Gavish et al. uncover recurrent patterns of gene expression that explain a significant proportion of transcriptomic heterogeneity observed in cancer and explore their functional significance. By integrating scRNA-seq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer cell 2023-09, Vol.41 (9), p.1548-1550
Hauptverfasser: Jones, Thomas P., McGranahan, Nicholas
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By integrating scRNA-seq datasets across 77 studies and 24 cancer types, in Nature, Gavish et al. uncover recurrent patterns of gene expression that explain a significant proportion of transcriptomic heterogeneity observed in cancer and explore their functional significance. By integrating scRNA-seq datasets across 77 studies and 24 cancer types, in Nature, Gavish et al. uncover recurrent patterns of gene expression that explain a significant proportion of transcriptomic heterogeneity observedin cancer and explore their functional significance.
ISSN:1535-6108
1878-3686
DOI:10.1016/j.ccell.2023.07.008