A remark on Plotkin's bound
Let A(n,d) denote the greatest number of codewords possible in a binary block code of length n and distance d. Plotkin gave a simple counting argument which leads to an upper bound B(n,d) for A(n,d) when d>n/2. Levenshtein (1964) proved that if Hadamard's conjecture is true then Plotkin'...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2001-01, Vol.47 (1), p.352-355 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let A(n,d) denote the greatest number of codewords possible in a binary block code of length n and distance d. Plotkin gave a simple counting argument which leads to an upper bound B(n,d) for A(n,d) when d>n/2. Levenshtein (1964) proved that if Hadamard's conjecture is true then Plotkin's bound is sharp. Though Hadamard's conjecture is probably true, its resolution remains a difficult open question. So it is natural to ask what one can prove about the ratio R(n,d)=A(n,d)/B(n,d). This note presents an efficient heuristic for constructing, for any d/spl ges/n/2, a binary code which has at least 0.495B(n,d) codewords. A computer calculation confirms that R(n,d)>0.495 for d up to one trillion. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/18.904534 |