A remark on Plotkin's bound

Let A(n,d) denote the greatest number of codewords possible in a binary block code of length n and distance d. Plotkin gave a simple counting argument which leads to an upper bound B(n,d) for A(n,d) when d>n/2. Levenshtein (1964) proved that if Hadamard's conjecture is true then Plotkin'...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2001-01, Vol.47 (1), p.352-355
Hauptverfasser: de Launey, W., Gordon, D.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let A(n,d) denote the greatest number of codewords possible in a binary block code of length n and distance d. Plotkin gave a simple counting argument which leads to an upper bound B(n,d) for A(n,d) when d>n/2. Levenshtein (1964) proved that if Hadamard's conjecture is true then Plotkin's bound is sharp. Though Hadamard's conjecture is probably true, its resolution remains a difficult open question. So it is natural to ask what one can prove about the ratio R(n,d)=A(n,d)/B(n,d). This note presents an efficient heuristic for constructing, for any d/spl ges/n/2, a binary code which has at least 0.495B(n,d) codewords. A computer calculation confirms that R(n,d)>0.495 for d up to one trillion.
ISSN:0018-9448
1557-9654
DOI:10.1109/18.904534