Road adaptive active suspension design using linear parameter-varying gain-scheduling
This paper presents a novel approach to the design of road adaptive active suspensions via a combination of linear parameter-varying control and nonlinear backstepping techniques. Two levels of adaptation are considered: the lower level control design shapes the nonlinear characteristics of the vehi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control systems technology 2002-01, Vol.10 (1), p.43-54 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a novel approach to the design of road adaptive active suspensions via a combination of linear parameter-varying control and nonlinear backstepping techniques. Two levels of adaptation are considered: the lower level control design shapes the nonlinear characteristics of the vehicle suspension as a function road conditions, while the higher level design involves adaptive switching between these different nonlinear characteristics, based on the road conditions. A quarter car suspension model with a nonlinear dynamic model of the hydraulic actuator is employed. The suspension deflection, car body acceleration, hydraulic pressure drop, and spool valve displacement are used as feedback signals. Nonlinear simulations show that these adaptive suspension controllers provide superior passenger comfort over the whole range of road conditions. |
---|---|
ISSN: | 1063-6536 1558-0865 |
DOI: | 10.1109/87.974337 |