Approximation accuracy analysis of fuzzy systems as function approximators
This paper establishes the approximation error bounds for various classes of fuzzy systems (i.e., fuzzy systems generated by different inferential and defuzzification methods). Based on these bounds, the approximation accuracy of various classes of fuzzy systems is analyzed and compared. It is seen...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on fuzzy systems 1996-02, Vol.4 (1), p.44-63 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper establishes the approximation error bounds for various classes of fuzzy systems (i.e., fuzzy systems generated by different inferential and defuzzification methods). Based on these bounds, the approximation accuracy of various classes of fuzzy systems is analyzed and compared. It is seen that the class of fuzzy systems generated by the product inference and the center-average defuzzifier has better approximation accuracy and properties than the class of fuzzy systems generated by the min inference and the center-average defuzzifier, and the class of fuzzy systems defuzzified by the MoM defuzzifier. In addition, it is proved that fuzzy systems can represent any linear and multilinear function and explicit expressions of fuzzy systems generated by the MoM defuzzified method are given. |
---|---|
ISSN: | 1063-6706 1941-0034 |
DOI: | 10.1109/91.481844 |