Chlorinated‐based bioceramics incorporated in polycaprolactone membranes
The development of bioactive membranes with bone repair properties is great interest in the field of tissue engineering. In this study, we aimed to fabricate and characterize a composite membrane composed of sol–gel synthesized bioceramics and electrospun polycaprolactone (PCL) fibers for bone tissu...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2024-01, Vol.112 (1), p.e35315-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | e35315 |
container_title | Journal of biomedical materials research. Part B, Applied biomaterials |
container_volume | 112 |
creator | Guimarães, Carolina Curcio Lott Souza, Joyce Rodrigues Campos, Tiago Moreira Bastos Marques, Thays Oliveira Kito, Letícia Terumi Kukulka, Elisa Camargo Vasconcellos, Luana Marotta Reis Borges, Alexandre Luiz Souto Thim, Gilmar Patrocínio |
description | The development of bioactive membranes with bone repair properties is great interest in the field of tissue engineering. In this study, we aimed to fabricate and characterize a composite membrane composed of sol–gel synthesized bioceramics and electrospun polycaprolactone (PCL) fibers for bone tissue regeneration applications. The bioceramics were prepared using the sol–gel method with nitrate (N) and chloride (CL) as precursors. PCL and bioceramic solutions were electrospun to obtain ultrafine fiber mats. Raman spectroscopy, x‐ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to characterize the materials. The results showed that both chlorinated and non‐chlorinated bioceramics contained NBOs (non‐bridge bonds) and crystallized the α‐wollastonite phase, with the chlorinated version doing so at lower temperatures. In vitro tests were performed to evaluate cytotoxicity, cell adhesion, and mineralized matrix formation on the membranes. The composite membranes showed improved cell viability and promoted mineralization nodules formation. This study presents a promising approach for the development of bioactive membranes for bone tissue engineering, with potential applications in bone regeneration therapies. |
doi_str_mv | 10.1002/jbm.b.35315 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2852631445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2852631445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3605-232c87fff183a7be918f20a526c6e9dda2edad5b5a2d5798e78075e348d606b83</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EoqUwsaNKLEgoJbbj2Blpxa0qYoHZ8uVEpEriYLdC3XgEnpEnwaWlAwPTOUf69J1fP0KnOB3hNCVXc92M9Igyitke6mPGSJIVAu_vdk576CiEeYTzlNFD1KOciYJkrI-mk9fa-apVC7BfH59aBbBDXTkDXjWVCcOqNc53zq-BeAw7V6-M6ryrlVm4FoYNNNqrFsIxOihVHeBkOwfo5fbmeXKfzJ7uHibXs8TQ-D4hlBjBy7LEgiquocCiJKliJDc5FNYqAlZZppkilvFCABcpZ0AzYfM014IO0MXGG0O8LSEsZFMFA3UdQ7hlkEREF8VZxiJ6_gedu6VvYzpJCsxxRjhZCy83lPEuBA-l7HzVKL-SOJXrimWsWGr5U3Gkz7bOpW7A7tjfTiNANsB7VcPqP5ecjh_HG-s3vCeH-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917142728</pqid></control><display><type>article</type><title>Chlorinated‐based bioceramics incorporated in polycaprolactone membranes</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Guimarães, Carolina Curcio Lott ; Souza, Joyce Rodrigues ; Campos, Tiago Moreira Bastos ; Marques, Thays Oliveira ; Kito, Letícia Terumi ; Kukulka, Elisa Camargo ; Vasconcellos, Luana Marotta Reis ; Borges, Alexandre Luiz Souto ; Thim, Gilmar Patrocínio</creator><creatorcontrib>Guimarães, Carolina Curcio Lott ; Souza, Joyce Rodrigues ; Campos, Tiago Moreira Bastos ; Marques, Thays Oliveira ; Kito, Letícia Terumi ; Kukulka, Elisa Camargo ; Vasconcellos, Luana Marotta Reis ; Borges, Alexandre Luiz Souto ; Thim, Gilmar Patrocínio</creatorcontrib><description>The development of bioactive membranes with bone repair properties is great interest in the field of tissue engineering. In this study, we aimed to fabricate and characterize a composite membrane composed of sol–gel synthesized bioceramics and electrospun polycaprolactone (PCL) fibers for bone tissue regeneration applications. The bioceramics were prepared using the sol–gel method with nitrate (N) and chloride (CL) as precursors. PCL and bioceramic solutions were electrospun to obtain ultrafine fiber mats. Raman spectroscopy, x‐ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to characterize the materials. The results showed that both chlorinated and non‐chlorinated bioceramics contained NBOs (non‐bridge bonds) and crystallized the α‐wollastonite phase, with the chlorinated version doing so at lower temperatures. In vitro tests were performed to evaluate cytotoxicity, cell adhesion, and mineralized matrix formation on the membranes. The composite membranes showed improved cell viability and promoted mineralization nodules formation. This study presents a promising approach for the development of bioactive membranes for bone tissue engineering, with potential applications in bone regeneration therapies.</description><identifier>ISSN: 1552-4973</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.35315</identifier><identifier>PMID: 37589245</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Bioceramics ; Biocompatibility ; Biocompatible Materials - chemistry ; Biological activity ; biomaterials ; Biomedical materials ; bone ; Bone and Bones ; Bone growth ; Bone healing ; Bones ; Cell adhesion ; Cell viability ; Chlorination ; Crystallization ; Cytotoxicity ; Fibers ; Fourier transforms ; In vitro methods and tests ; Infrared analysis ; Infrared spectroscopy ; Low temperature ; materials engineering ; Materials research ; Materials science ; medicine ; Membranes ; Mineralization ; Nodules ; Polycaprolactone ; Polyesters - chemistry ; Raman spectroscopy ; Regeneration ; Regeneration (physiology) ; Scanning electron microscopy ; Sol-gel processes ; Spectroscopy, Fourier Transform Infrared ; Spectrum analysis ; Thermogravimetric analysis ; Tissue engineering ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry ; Ultrafines ; Wollastonite</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2024-01, Vol.112 (1), p.e35315-n/a</ispartof><rights>2023 Wiley Periodicals LLC.</rights><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3605-232c87fff183a7be918f20a526c6e9dda2edad5b5a2d5798e78075e348d606b83</citedby><cites>FETCH-LOGICAL-c3605-232c87fff183a7be918f20a526c6e9dda2edad5b5a2d5798e78075e348d606b83</cites><orcidid>0000-0002-3444-4895</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.b.35315$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.b.35315$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37589245$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guimarães, Carolina Curcio Lott</creatorcontrib><creatorcontrib>Souza, Joyce Rodrigues</creatorcontrib><creatorcontrib>Campos, Tiago Moreira Bastos</creatorcontrib><creatorcontrib>Marques, Thays Oliveira</creatorcontrib><creatorcontrib>Kito, Letícia Terumi</creatorcontrib><creatorcontrib>Kukulka, Elisa Camargo</creatorcontrib><creatorcontrib>Vasconcellos, Luana Marotta Reis</creatorcontrib><creatorcontrib>Borges, Alexandre Luiz Souto</creatorcontrib><creatorcontrib>Thim, Gilmar Patrocínio</creatorcontrib><title>Chlorinated‐based bioceramics incorporated in polycaprolactone membranes</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><description>The development of bioactive membranes with bone repair properties is great interest in the field of tissue engineering. In this study, we aimed to fabricate and characterize a composite membrane composed of sol–gel synthesized bioceramics and electrospun polycaprolactone (PCL) fibers for bone tissue regeneration applications. The bioceramics were prepared using the sol–gel method with nitrate (N) and chloride (CL) as precursors. PCL and bioceramic solutions were electrospun to obtain ultrafine fiber mats. Raman spectroscopy, x‐ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to characterize the materials. The results showed that both chlorinated and non‐chlorinated bioceramics contained NBOs (non‐bridge bonds) and crystallized the α‐wollastonite phase, with the chlorinated version doing so at lower temperatures. In vitro tests were performed to evaluate cytotoxicity, cell adhesion, and mineralized matrix formation on the membranes. The composite membranes showed improved cell viability and promoted mineralization nodules formation. This study presents a promising approach for the development of bioactive membranes for bone tissue engineering, with potential applications in bone regeneration therapies.</description><subject>Bioceramics</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biological activity</subject><subject>biomaterials</subject><subject>Biomedical materials</subject><subject>bone</subject><subject>Bone and Bones</subject><subject>Bone growth</subject><subject>Bone healing</subject><subject>Bones</subject><subject>Cell adhesion</subject><subject>Cell viability</subject><subject>Chlorination</subject><subject>Crystallization</subject><subject>Cytotoxicity</subject><subject>Fibers</subject><subject>Fourier transforms</subject><subject>In vitro methods and tests</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Low temperature</subject><subject>materials engineering</subject><subject>Materials research</subject><subject>Materials science</subject><subject>medicine</subject><subject>Membranes</subject><subject>Mineralization</subject><subject>Nodules</subject><subject>Polycaprolactone</subject><subject>Polyesters - chemistry</subject><subject>Raman spectroscopy</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>Scanning electron microscopy</subject><subject>Sol-gel processes</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Spectrum analysis</subject><subject>Thermogravimetric analysis</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Ultrafines</subject><subject>Wollastonite</subject><issn>1552-4973</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kLtOwzAUhi0EoqUwsaNKLEgoJbbj2Blpxa0qYoHZ8uVEpEriYLdC3XgEnpEnwaWlAwPTOUf69J1fP0KnOB3hNCVXc92M9Igyitke6mPGSJIVAu_vdk576CiEeYTzlNFD1KOciYJkrI-mk9fa-apVC7BfH59aBbBDXTkDXjWVCcOqNc53zq-BeAw7V6-M6ryrlVm4FoYNNNqrFsIxOihVHeBkOwfo5fbmeXKfzJ7uHibXs8TQ-D4hlBjBy7LEgiquocCiJKliJDc5FNYqAlZZppkilvFCABcpZ0AzYfM014IO0MXGG0O8LSEsZFMFA3UdQ7hlkEREF8VZxiJ6_gedu6VvYzpJCsxxRjhZCy83lPEuBA-l7HzVKL-SOJXrimWsWGr5U3Gkz7bOpW7A7tjfTiNANsB7VcPqP5ecjh_HG-s3vCeH-w</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Guimarães, Carolina Curcio Lott</creator><creator>Souza, Joyce Rodrigues</creator><creator>Campos, Tiago Moreira Bastos</creator><creator>Marques, Thays Oliveira</creator><creator>Kito, Letícia Terumi</creator><creator>Kukulka, Elisa Camargo</creator><creator>Vasconcellos, Luana Marotta Reis</creator><creator>Borges, Alexandre Luiz Souto</creator><creator>Thim, Gilmar Patrocínio</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3444-4895</orcidid></search><sort><creationdate>202401</creationdate><title>Chlorinated‐based bioceramics incorporated in polycaprolactone membranes</title><author>Guimarães, Carolina Curcio Lott ; Souza, Joyce Rodrigues ; Campos, Tiago Moreira Bastos ; Marques, Thays Oliveira ; Kito, Letícia Terumi ; Kukulka, Elisa Camargo ; Vasconcellos, Luana Marotta Reis ; Borges, Alexandre Luiz Souto ; Thim, Gilmar Patrocínio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3605-232c87fff183a7be918f20a526c6e9dda2edad5b5a2d5798e78075e348d606b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bioceramics</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biological activity</topic><topic>biomaterials</topic><topic>Biomedical materials</topic><topic>bone</topic><topic>Bone and Bones</topic><topic>Bone growth</topic><topic>Bone healing</topic><topic>Bones</topic><topic>Cell adhesion</topic><topic>Cell viability</topic><topic>Chlorination</topic><topic>Crystallization</topic><topic>Cytotoxicity</topic><topic>Fibers</topic><topic>Fourier transforms</topic><topic>In vitro methods and tests</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Low temperature</topic><topic>materials engineering</topic><topic>Materials research</topic><topic>Materials science</topic><topic>medicine</topic><topic>Membranes</topic><topic>Mineralization</topic><topic>Nodules</topic><topic>Polycaprolactone</topic><topic>Polyesters - chemistry</topic><topic>Raman spectroscopy</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>Scanning electron microscopy</topic><topic>Sol-gel processes</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Spectrum analysis</topic><topic>Thermogravimetric analysis</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Ultrafines</topic><topic>Wollastonite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guimarães, Carolina Curcio Lott</creatorcontrib><creatorcontrib>Souza, Joyce Rodrigues</creatorcontrib><creatorcontrib>Campos, Tiago Moreira Bastos</creatorcontrib><creatorcontrib>Marques, Thays Oliveira</creatorcontrib><creatorcontrib>Kito, Letícia Terumi</creatorcontrib><creatorcontrib>Kukulka, Elisa Camargo</creatorcontrib><creatorcontrib>Vasconcellos, Luana Marotta Reis</creatorcontrib><creatorcontrib>Borges, Alexandre Luiz Souto</creatorcontrib><creatorcontrib>Thim, Gilmar Patrocínio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guimarães, Carolina Curcio Lott</au><au>Souza, Joyce Rodrigues</au><au>Campos, Tiago Moreira Bastos</au><au>Marques, Thays Oliveira</au><au>Kito, Letícia Terumi</au><au>Kukulka, Elisa Camargo</au><au>Vasconcellos, Luana Marotta Reis</au><au>Borges, Alexandre Luiz Souto</au><au>Thim, Gilmar Patrocínio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chlorinated‐based bioceramics incorporated in polycaprolactone membranes</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><date>2024-01</date><risdate>2024</risdate><volume>112</volume><issue>1</issue><spage>e35315</spage><epage>n/a</epage><pages>e35315-n/a</pages><issn>1552-4973</issn><eissn>1552-4981</eissn><abstract>The development of bioactive membranes with bone repair properties is great interest in the field of tissue engineering. In this study, we aimed to fabricate and characterize a composite membrane composed of sol–gel synthesized bioceramics and electrospun polycaprolactone (PCL) fibers for bone tissue regeneration applications. The bioceramics were prepared using the sol–gel method with nitrate (N) and chloride (CL) as precursors. PCL and bioceramic solutions were electrospun to obtain ultrafine fiber mats. Raman spectroscopy, x‐ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to characterize the materials. The results showed that both chlorinated and non‐chlorinated bioceramics contained NBOs (non‐bridge bonds) and crystallized the α‐wollastonite phase, with the chlorinated version doing so at lower temperatures. In vitro tests were performed to evaluate cytotoxicity, cell adhesion, and mineralized matrix formation on the membranes. The composite membranes showed improved cell viability and promoted mineralization nodules formation. This study presents a promising approach for the development of bioactive membranes for bone tissue engineering, with potential applications in bone regeneration therapies.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>37589245</pmid><doi>10.1002/jbm.b.35315</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3444-4895</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4973 |
ispartof | Journal of biomedical materials research. Part B, Applied biomaterials, 2024-01, Vol.112 (1), p.e35315-n/a |
issn | 1552-4973 1552-4981 |
language | eng |
recordid | cdi_proquest_miscellaneous_2852631445 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Bioceramics Biocompatibility Biocompatible Materials - chemistry Biological activity biomaterials Biomedical materials bone Bone and Bones Bone growth Bone healing Bones Cell adhesion Cell viability Chlorination Crystallization Cytotoxicity Fibers Fourier transforms In vitro methods and tests Infrared analysis Infrared spectroscopy Low temperature materials engineering Materials research Materials science medicine Membranes Mineralization Nodules Polycaprolactone Polyesters - chemistry Raman spectroscopy Regeneration Regeneration (physiology) Scanning electron microscopy Sol-gel processes Spectroscopy, Fourier Transform Infrared Spectrum analysis Thermogravimetric analysis Tissue engineering Tissue Engineering - methods Tissue Scaffolds - chemistry Ultrafines Wollastonite |
title | Chlorinated‐based bioceramics incorporated in polycaprolactone membranes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T12%3A41%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chlorinated%E2%80%90based%20bioceramics%20incorporated%20in%20polycaprolactone%20membranes&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Guimar%C3%A3es,%20Carolina%20Curcio%20Lott&rft.date=2024-01&rft.volume=112&rft.issue=1&rft.spage=e35315&rft.epage=n/a&rft.pages=e35315-n/a&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.35315&rft_dat=%3Cproquest_cross%3E2852631445%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917142728&rft_id=info:pmid/37589245&rfr_iscdi=true |