Chlorinated‐based bioceramics incorporated in polycaprolactone membranes

The development of bioactive membranes with bone repair properties is great interest in the field of tissue engineering. In this study, we aimed to fabricate and characterize a composite membrane composed of sol–gel synthesized bioceramics and electrospun polycaprolactone (PCL) fibers for bone tissu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2024-01, Vol.112 (1), p.e35315-n/a
Hauptverfasser: Guimarães, Carolina Curcio Lott, Souza, Joyce Rodrigues, Campos, Tiago Moreira Bastos, Marques, Thays Oliveira, Kito, Letícia Terumi, Kukulka, Elisa Camargo, Vasconcellos, Luana Marotta Reis, Borges, Alexandre Luiz Souto, Thim, Gilmar Patrocínio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page e35315
container_title Journal of biomedical materials research. Part B, Applied biomaterials
container_volume 112
creator Guimarães, Carolina Curcio Lott
Souza, Joyce Rodrigues
Campos, Tiago Moreira Bastos
Marques, Thays Oliveira
Kito, Letícia Terumi
Kukulka, Elisa Camargo
Vasconcellos, Luana Marotta Reis
Borges, Alexandre Luiz Souto
Thim, Gilmar Patrocínio
description The development of bioactive membranes with bone repair properties is great interest in the field of tissue engineering. In this study, we aimed to fabricate and characterize a composite membrane composed of sol–gel synthesized bioceramics and electrospun polycaprolactone (PCL) fibers for bone tissue regeneration applications. The bioceramics were prepared using the sol–gel method with nitrate (N) and chloride (CL) as precursors. PCL and bioceramic solutions were electrospun to obtain ultrafine fiber mats. Raman spectroscopy, x‐ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to characterize the materials. The results showed that both chlorinated and non‐chlorinated bioceramics contained NBOs (non‐bridge bonds) and crystallized the α‐wollastonite phase, with the chlorinated version doing so at lower temperatures. In vitro tests were performed to evaluate cytotoxicity, cell adhesion, and mineralized matrix formation on the membranes. The composite membranes showed improved cell viability and promoted mineralization nodules formation. This study presents a promising approach for the development of bioactive membranes for bone tissue engineering, with potential applications in bone regeneration therapies.
doi_str_mv 10.1002/jbm.b.35315
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2852631445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2852631445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3605-232c87fff183a7be918f20a526c6e9dda2edad5b5a2d5798e78075e348d606b83</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EoqUwsaNKLEgoJbbj2Blpxa0qYoHZ8uVEpEriYLdC3XgEnpEnwaWlAwPTOUf69J1fP0KnOB3hNCVXc92M9Igyitke6mPGSJIVAu_vdk576CiEeYTzlNFD1KOciYJkrI-mk9fa-apVC7BfH59aBbBDXTkDXjWVCcOqNc53zq-BeAw7V6-M6ryrlVm4FoYNNNqrFsIxOihVHeBkOwfo5fbmeXKfzJ7uHibXs8TQ-D4hlBjBy7LEgiquocCiJKliJDc5FNYqAlZZppkilvFCABcpZ0AzYfM014IO0MXGG0O8LSEsZFMFA3UdQ7hlkEREF8VZxiJ6_gedu6VvYzpJCsxxRjhZCy83lPEuBA-l7HzVKL-SOJXrimWsWGr5U3Gkz7bOpW7A7tjfTiNANsB7VcPqP5ecjh_HG-s3vCeH-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917142728</pqid></control><display><type>article</type><title>Chlorinated‐based bioceramics incorporated in polycaprolactone membranes</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Guimarães, Carolina Curcio Lott ; Souza, Joyce Rodrigues ; Campos, Tiago Moreira Bastos ; Marques, Thays Oliveira ; Kito, Letícia Terumi ; Kukulka, Elisa Camargo ; Vasconcellos, Luana Marotta Reis ; Borges, Alexandre Luiz Souto ; Thim, Gilmar Patrocínio</creator><creatorcontrib>Guimarães, Carolina Curcio Lott ; Souza, Joyce Rodrigues ; Campos, Tiago Moreira Bastos ; Marques, Thays Oliveira ; Kito, Letícia Terumi ; Kukulka, Elisa Camargo ; Vasconcellos, Luana Marotta Reis ; Borges, Alexandre Luiz Souto ; Thim, Gilmar Patrocínio</creatorcontrib><description>The development of bioactive membranes with bone repair properties is great interest in the field of tissue engineering. In this study, we aimed to fabricate and characterize a composite membrane composed of sol–gel synthesized bioceramics and electrospun polycaprolactone (PCL) fibers for bone tissue regeneration applications. The bioceramics were prepared using the sol–gel method with nitrate (N) and chloride (CL) as precursors. PCL and bioceramic solutions were electrospun to obtain ultrafine fiber mats. Raman spectroscopy, x‐ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to characterize the materials. The results showed that both chlorinated and non‐chlorinated bioceramics contained NBOs (non‐bridge bonds) and crystallized the α‐wollastonite phase, with the chlorinated version doing so at lower temperatures. In vitro tests were performed to evaluate cytotoxicity, cell adhesion, and mineralized matrix formation on the membranes. The composite membranes showed improved cell viability and promoted mineralization nodules formation. This study presents a promising approach for the development of bioactive membranes for bone tissue engineering, with potential applications in bone regeneration therapies.</description><identifier>ISSN: 1552-4973</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.35315</identifier><identifier>PMID: 37589245</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Bioceramics ; Biocompatibility ; Biocompatible Materials - chemistry ; Biological activity ; biomaterials ; Biomedical materials ; bone ; Bone and Bones ; Bone growth ; Bone healing ; Bones ; Cell adhesion ; Cell viability ; Chlorination ; Crystallization ; Cytotoxicity ; Fibers ; Fourier transforms ; In vitro methods and tests ; Infrared analysis ; Infrared spectroscopy ; Low temperature ; materials engineering ; Materials research ; Materials science ; medicine ; Membranes ; Mineralization ; Nodules ; Polycaprolactone ; Polyesters - chemistry ; Raman spectroscopy ; Regeneration ; Regeneration (physiology) ; Scanning electron microscopy ; Sol-gel processes ; Spectroscopy, Fourier Transform Infrared ; Spectrum analysis ; Thermogravimetric analysis ; Tissue engineering ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry ; Ultrafines ; Wollastonite</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2024-01, Vol.112 (1), p.e35315-n/a</ispartof><rights>2023 Wiley Periodicals LLC.</rights><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3605-232c87fff183a7be918f20a526c6e9dda2edad5b5a2d5798e78075e348d606b83</citedby><cites>FETCH-LOGICAL-c3605-232c87fff183a7be918f20a526c6e9dda2edad5b5a2d5798e78075e348d606b83</cites><orcidid>0000-0002-3444-4895</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.b.35315$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.b.35315$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37589245$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guimarães, Carolina Curcio Lott</creatorcontrib><creatorcontrib>Souza, Joyce Rodrigues</creatorcontrib><creatorcontrib>Campos, Tiago Moreira Bastos</creatorcontrib><creatorcontrib>Marques, Thays Oliveira</creatorcontrib><creatorcontrib>Kito, Letícia Terumi</creatorcontrib><creatorcontrib>Kukulka, Elisa Camargo</creatorcontrib><creatorcontrib>Vasconcellos, Luana Marotta Reis</creatorcontrib><creatorcontrib>Borges, Alexandre Luiz Souto</creatorcontrib><creatorcontrib>Thim, Gilmar Patrocínio</creatorcontrib><title>Chlorinated‐based bioceramics incorporated in polycaprolactone membranes</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><description>The development of bioactive membranes with bone repair properties is great interest in the field of tissue engineering. In this study, we aimed to fabricate and characterize a composite membrane composed of sol–gel synthesized bioceramics and electrospun polycaprolactone (PCL) fibers for bone tissue regeneration applications. The bioceramics were prepared using the sol–gel method with nitrate (N) and chloride (CL) as precursors. PCL and bioceramic solutions were electrospun to obtain ultrafine fiber mats. Raman spectroscopy, x‐ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to characterize the materials. The results showed that both chlorinated and non‐chlorinated bioceramics contained NBOs (non‐bridge bonds) and crystallized the α‐wollastonite phase, with the chlorinated version doing so at lower temperatures. In vitro tests were performed to evaluate cytotoxicity, cell adhesion, and mineralized matrix formation on the membranes. The composite membranes showed improved cell viability and promoted mineralization nodules formation. This study presents a promising approach for the development of bioactive membranes for bone tissue engineering, with potential applications in bone regeneration therapies.</description><subject>Bioceramics</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biological activity</subject><subject>biomaterials</subject><subject>Biomedical materials</subject><subject>bone</subject><subject>Bone and Bones</subject><subject>Bone growth</subject><subject>Bone healing</subject><subject>Bones</subject><subject>Cell adhesion</subject><subject>Cell viability</subject><subject>Chlorination</subject><subject>Crystallization</subject><subject>Cytotoxicity</subject><subject>Fibers</subject><subject>Fourier transforms</subject><subject>In vitro methods and tests</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Low temperature</subject><subject>materials engineering</subject><subject>Materials research</subject><subject>Materials science</subject><subject>medicine</subject><subject>Membranes</subject><subject>Mineralization</subject><subject>Nodules</subject><subject>Polycaprolactone</subject><subject>Polyesters - chemistry</subject><subject>Raman spectroscopy</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>Scanning electron microscopy</subject><subject>Sol-gel processes</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Spectrum analysis</subject><subject>Thermogravimetric analysis</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Ultrafines</subject><subject>Wollastonite</subject><issn>1552-4973</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kLtOwzAUhi0EoqUwsaNKLEgoJbbj2Blpxa0qYoHZ8uVEpEriYLdC3XgEnpEnwaWlAwPTOUf69J1fP0KnOB3hNCVXc92M9Igyitke6mPGSJIVAu_vdk576CiEeYTzlNFD1KOciYJkrI-mk9fa-apVC7BfH59aBbBDXTkDXjWVCcOqNc53zq-BeAw7V6-M6ryrlVm4FoYNNNqrFsIxOihVHeBkOwfo5fbmeXKfzJ7uHibXs8TQ-D4hlBjBy7LEgiquocCiJKliJDc5FNYqAlZZppkilvFCABcpZ0AzYfM014IO0MXGG0O8LSEsZFMFA3UdQ7hlkEREF8VZxiJ6_gedu6VvYzpJCsxxRjhZCy83lPEuBA-l7HzVKL-SOJXrimWsWGr5U3Gkz7bOpW7A7tjfTiNANsB7VcPqP5ecjh_HG-s3vCeH-w</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Guimarães, Carolina Curcio Lott</creator><creator>Souza, Joyce Rodrigues</creator><creator>Campos, Tiago Moreira Bastos</creator><creator>Marques, Thays Oliveira</creator><creator>Kito, Letícia Terumi</creator><creator>Kukulka, Elisa Camargo</creator><creator>Vasconcellos, Luana Marotta Reis</creator><creator>Borges, Alexandre Luiz Souto</creator><creator>Thim, Gilmar Patrocínio</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3444-4895</orcidid></search><sort><creationdate>202401</creationdate><title>Chlorinated‐based bioceramics incorporated in polycaprolactone membranes</title><author>Guimarães, Carolina Curcio Lott ; Souza, Joyce Rodrigues ; Campos, Tiago Moreira Bastos ; Marques, Thays Oliveira ; Kito, Letícia Terumi ; Kukulka, Elisa Camargo ; Vasconcellos, Luana Marotta Reis ; Borges, Alexandre Luiz Souto ; Thim, Gilmar Patrocínio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3605-232c87fff183a7be918f20a526c6e9dda2edad5b5a2d5798e78075e348d606b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bioceramics</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biological activity</topic><topic>biomaterials</topic><topic>Biomedical materials</topic><topic>bone</topic><topic>Bone and Bones</topic><topic>Bone growth</topic><topic>Bone healing</topic><topic>Bones</topic><topic>Cell adhesion</topic><topic>Cell viability</topic><topic>Chlorination</topic><topic>Crystallization</topic><topic>Cytotoxicity</topic><topic>Fibers</topic><topic>Fourier transforms</topic><topic>In vitro methods and tests</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Low temperature</topic><topic>materials engineering</topic><topic>Materials research</topic><topic>Materials science</topic><topic>medicine</topic><topic>Membranes</topic><topic>Mineralization</topic><topic>Nodules</topic><topic>Polycaprolactone</topic><topic>Polyesters - chemistry</topic><topic>Raman spectroscopy</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>Scanning electron microscopy</topic><topic>Sol-gel processes</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Spectrum analysis</topic><topic>Thermogravimetric analysis</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Ultrafines</topic><topic>Wollastonite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guimarães, Carolina Curcio Lott</creatorcontrib><creatorcontrib>Souza, Joyce Rodrigues</creatorcontrib><creatorcontrib>Campos, Tiago Moreira Bastos</creatorcontrib><creatorcontrib>Marques, Thays Oliveira</creatorcontrib><creatorcontrib>Kito, Letícia Terumi</creatorcontrib><creatorcontrib>Kukulka, Elisa Camargo</creatorcontrib><creatorcontrib>Vasconcellos, Luana Marotta Reis</creatorcontrib><creatorcontrib>Borges, Alexandre Luiz Souto</creatorcontrib><creatorcontrib>Thim, Gilmar Patrocínio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guimarães, Carolina Curcio Lott</au><au>Souza, Joyce Rodrigues</au><au>Campos, Tiago Moreira Bastos</au><au>Marques, Thays Oliveira</au><au>Kito, Letícia Terumi</au><au>Kukulka, Elisa Camargo</au><au>Vasconcellos, Luana Marotta Reis</au><au>Borges, Alexandre Luiz Souto</au><au>Thim, Gilmar Patrocínio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chlorinated‐based bioceramics incorporated in polycaprolactone membranes</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><date>2024-01</date><risdate>2024</risdate><volume>112</volume><issue>1</issue><spage>e35315</spage><epage>n/a</epage><pages>e35315-n/a</pages><issn>1552-4973</issn><eissn>1552-4981</eissn><abstract>The development of bioactive membranes with bone repair properties is great interest in the field of tissue engineering. In this study, we aimed to fabricate and characterize a composite membrane composed of sol–gel synthesized bioceramics and electrospun polycaprolactone (PCL) fibers for bone tissue regeneration applications. The bioceramics were prepared using the sol–gel method with nitrate (N) and chloride (CL) as precursors. PCL and bioceramic solutions were electrospun to obtain ultrafine fiber mats. Raman spectroscopy, x‐ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to characterize the materials. The results showed that both chlorinated and non‐chlorinated bioceramics contained NBOs (non‐bridge bonds) and crystallized the α‐wollastonite phase, with the chlorinated version doing so at lower temperatures. In vitro tests were performed to evaluate cytotoxicity, cell adhesion, and mineralized matrix formation on the membranes. The composite membranes showed improved cell viability and promoted mineralization nodules formation. This study presents a promising approach for the development of bioactive membranes for bone tissue engineering, with potential applications in bone regeneration therapies.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>37589245</pmid><doi>10.1002/jbm.b.35315</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3444-4895</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1552-4973
ispartof Journal of biomedical materials research. Part B, Applied biomaterials, 2024-01, Vol.112 (1), p.e35315-n/a
issn 1552-4973
1552-4981
language eng
recordid cdi_proquest_miscellaneous_2852631445
source MEDLINE; Access via Wiley Online Library
subjects Bioceramics
Biocompatibility
Biocompatible Materials - chemistry
Biological activity
biomaterials
Biomedical materials
bone
Bone and Bones
Bone growth
Bone healing
Bones
Cell adhesion
Cell viability
Chlorination
Crystallization
Cytotoxicity
Fibers
Fourier transforms
In vitro methods and tests
Infrared analysis
Infrared spectroscopy
Low temperature
materials engineering
Materials research
Materials science
medicine
Membranes
Mineralization
Nodules
Polycaprolactone
Polyesters - chemistry
Raman spectroscopy
Regeneration
Regeneration (physiology)
Scanning electron microscopy
Sol-gel processes
Spectroscopy, Fourier Transform Infrared
Spectrum analysis
Thermogravimetric analysis
Tissue engineering
Tissue Engineering - methods
Tissue Scaffolds - chemistry
Ultrafines
Wollastonite
title Chlorinated‐based bioceramics incorporated in polycaprolactone membranes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T12%3A41%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chlorinated%E2%80%90based%20bioceramics%20incorporated%20in%20polycaprolactone%20membranes&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Guimar%C3%A3es,%20Carolina%20Curcio%20Lott&rft.date=2024-01&rft.volume=112&rft.issue=1&rft.spage=e35315&rft.epage=n/a&rft.pages=e35315-n/a&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.35315&rft_dat=%3Cproquest_cross%3E2852631445%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917142728&rft_id=info:pmid/37589245&rfr_iscdi=true