Chlorinated‐based bioceramics incorporated in polycaprolactone membranes

The development of bioactive membranes with bone repair properties is great interest in the field of tissue engineering. In this study, we aimed to fabricate and characterize a composite membrane composed of sol–gel synthesized bioceramics and electrospun polycaprolactone (PCL) fibers for bone tissu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2024-01, Vol.112 (1), p.e35315-n/a
Hauptverfasser: Guimarães, Carolina Curcio Lott, Souza, Joyce Rodrigues, Campos, Tiago Moreira Bastos, Marques, Thays Oliveira, Kito, Letícia Terumi, Kukulka, Elisa Camargo, Vasconcellos, Luana Marotta Reis, Borges, Alexandre Luiz Souto, Thim, Gilmar Patrocínio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of bioactive membranes with bone repair properties is great interest in the field of tissue engineering. In this study, we aimed to fabricate and characterize a composite membrane composed of sol–gel synthesized bioceramics and electrospun polycaprolactone (PCL) fibers for bone tissue regeneration applications. The bioceramics were prepared using the sol–gel method with nitrate (N) and chloride (CL) as precursors. PCL and bioceramic solutions were electrospun to obtain ultrafine fiber mats. Raman spectroscopy, x‐ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to characterize the materials. The results showed that both chlorinated and non‐chlorinated bioceramics contained NBOs (non‐bridge bonds) and crystallized the α‐wollastonite phase, with the chlorinated version doing so at lower temperatures. In vitro tests were performed to evaluate cytotoxicity, cell adhesion, and mineralized matrix formation on the membranes. The composite membranes showed improved cell viability and promoted mineralization nodules formation. This study presents a promising approach for the development of bioactive membranes for bone tissue engineering, with potential applications in bone regeneration therapies.
ISSN:1552-4973
1552-4981
DOI:10.1002/jbm.b.35315