The future transistors

The metal–oxide–semiconductor field-effect transistor (MOSFET), a core element of complementary metal–oxide–semiconductor (CMOS) technology, represents one of the most momentous inventions since the industrial revolution. Driven by the requirements for higher speed, energy efficiency and integration...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2023-08, Vol.620 (7974), p.501-515
Hauptverfasser: Cao, Wei, Bu, Huiming, Vinet, Maud, Cao, Min, Takagi, Shinichi, Hwang, Sungwoo, Ghani, Tahir, Banerjee, Kaustav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The metal–oxide–semiconductor field-effect transistor (MOSFET), a core element of complementary metal–oxide–semiconductor (CMOS) technology, represents one of the most momentous inventions since the industrial revolution. Driven by the requirements for higher speed, energy efficiency and integration density of integrated-circuit products, in the past six decades the physical gate length of MOSFETs has been scaled to sub-20 nanometres. However, the downscaling of transistors while keeping the power consumption low is increasingly challenging, even for the state-of-the-art fin field-effect transistors. Here we present a comprehensive assessment of the existing and future CMOS technologies, and discuss the challenges and opportunities for the design of FETs with sub-10-nanometre gate length based on a hierarchical framework established for FET scaling. We focus our evaluation on identifying the most promising sub-10-nanometre-gate-length MOSFETs based on the knowledge derived from previous scaling efforts, as well as the research efforts needed to make the transistors relevant to future logic integrated-circuit products. We also detail our vision of beyond-MOSFET future transistors and potential innovation opportunities. We anticipate that innovations in transistor technologies will continue to have a central role in driving future materials, device physics and topology, heterogeneous vertical and lateral integration, and computing technologies. The challenges and opportunities for the design of field-effect transistors are discussed and a vision of future transistors and potential innovation opportunities is provided.
ISSN:0028-0836
1476-4687
DOI:10.1038/s41586-023-06145-x