On /Zopf/(4)-linear Preparata-like and Kerdock-like codes
We say that a binary code of length n is additive if it is isomorphic to a subgroup of /Zopf/(2)//alpha// x /Zopf/(4)//beta//, where the quaternary coordinates are transformed to binary by means of the usual Gray map and hence /alpha/ 2/beta/ = n. In this paper, we prove that any additive extended P...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2003-11, Vol.49 (11), p.2834-2843 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We say that a binary code of length n is additive if it is isomorphic to a subgroup of /Zopf/(2)//alpha// x /Zopf/(4)//beta//, where the quaternary coordinates are transformed to binary by means of the usual Gray map and hence /alpha/ 2/beta/ = n. In this paper, we prove that any additive extended Preparata (1968) -like code always verifies /alpha/ = 0, i.e., it is always a /Zopf/(4)-linear code. Moreover, we compute the rank and the dimension of the kernel of such Preparata-like codes and also the rank and the kernel of the /Zopf/(4)-dual of these codes, i.e., the /Zopf/(4)-linear Kerdock-like codes. |
---|---|
ISSN: | 0018-9448 |
DOI: | 10.1109/TIT.2003.819329 |