Optimal instructional policies based on a random-trial incremental model of learning

The random-trial incremental (RTI) model of human associative learning proposes that learning due to a trial where the association is presented proceeds incrementally; but with a certain probability, constant across trials, no learning occurs due to a trial. Based on RTI, identifying a policy for se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man and cybernetics. Part A, Systems and humans man and cybernetics. Part A, Systems and humans, 2000-07, Vol.30 (4), p.490-494
1. Verfasser: Katsikopoulos, K.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The random-trial incremental (RTI) model of human associative learning proposes that learning due to a trial where the association is presented proceeds incrementally; but with a certain probability, constant across trials, no learning occurs due to a trial. Based on RTI, identifying a policy for sequencing presentation trials of different associations for maximizing overall learning can be accomplished via a Markov decision process. For both finite and infinite horizons and a quite general structure of costs and rewards, a policy that on each trial presents an association that leads to the maximum expected immediate net reward is optimal.
ISSN:1083-4427
2168-2216
1558-2426
2168-2232
DOI:10.1109/3468.852441