Probabilistic winner-take-all segmentation of images with application to ship detection

A recent neural clustering scheme called "probabilistic winner-take-all (PWTA)" is applied to image segmentation. It is demonstrated that PWTA avoids underutilization of clusters by adapting the form of the cluster-conditional probability density function as clustering proceeds. A modifica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2000-06, Vol.30 (3), p.485-490
Hauptverfasser: Osman, H., Blostein, S.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A recent neural clustering scheme called "probabilistic winner-take-all (PWTA)" is applied to image segmentation. It is demonstrated that PWTA avoids underutilization of clusters by adapting the form of the cluster-conditional probability density function as clustering proceeds. A modification to PWTA is introduced so as to explicitly utilize the spatial continuity of image regions and thus improve the PWTA segmentation performance. The effectiveness of PWTA is then demonstrated through the segmentation of airborne synthetic aperture radar (SAR) images of ocean surfaces so as to detect ship signatures, where an approach is proposed to find a suitable value for the number of clusters required for this application. Results show that PWTA gives high segmentation quality and significantly outperforms four other segmentation techniques, namely, 1) K-means, 2) maximum likelihood (ML), 3) backpropagation network (BPN), and 4) histogram thresholding.
ISSN:1083-4419
2168-2267
1941-0492
2168-2275
DOI:10.1109/3477.846236