Classification of Antarctic algae by applying Kohonen neural network with 14 elements determined by inductively coupled plasma optical emission spectrometry

Optical emission spectrometers can generate results, which sometimes are not easy to interpret, mainly when the analyses involve classifications. To make simultaneous data interpretation possible, the Kohonen neural network is used to classify different Antarctic algae according to their taxonomic g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Spectrochimica acta. Part B: Atomic spectroscopy 2005-06, Vol.60 (5), p.725-730
Hauptverfasser: Balbinot, L., Smichowski, P., Farias, S., Arruda, M.A.Z., Vodopivez, C., Poppi, R.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Optical emission spectrometers can generate results, which sometimes are not easy to interpret, mainly when the analyses involve classifications. To make simultaneous data interpretation possible, the Kohonen neural network is used to classify different Antarctic algae according to their taxonomic groups from the determination of 14 analytes. The Kohonen neural network architecture used was 5×5 neurons, thus reducing 14-dimension input data to two-dimensional space. The input data were 14 analytes (As, Co, Cu, Fe, Mn, Sr, Zn, Cd, Cr, Mo, Ni, Pb, Se, V) with their concentrations, determined by inductively coupled plasma optical emission spectrometry in 11 different species of algae. Three taxonomic groups ( Rhodophyta, Phaeophyta and Cholorophyta) can be differentiated and classified through only their Cu content.
ISSN:0584-8547
1873-3565
DOI:10.1016/j.sab.2005.03.005