Generalized Zernike or disc polynomials

We investigate generalized Zernike or disc polynomials P m,n α(z,z ∗) which are orthogonal 2D polynomials in the unit disc 0⩽ zz ∗ −1 is a free parameter. These polynomials can be expressed by Jacobi polynomials of transformed arguments in connection with a simple angle dependence. A limiting proced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2005-02, Vol.174 (1), p.135-163
1. Verfasser: Wunsche, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate generalized Zernike or disc polynomials P m,n α(z,z ∗) which are orthogonal 2D polynomials in the unit disc 0⩽ zz ∗ −1 is a free parameter. These polynomials can be expressed by Jacobi polynomials of transformed arguments in connection with a simple angle dependence. A limiting procedure α→∞ leads to Laguerre 2D polynomials L m,n(z,z ∗) . Furthermore, we introduce the corresponding orthonormalized disc functions. The disc polynomials and disc functions obey two differential equations, a first-order and a second-order one with a certain degree of freedom, and the operators of lowering and raising of the indices are found. These operators can be closed to a Lie algebra su(1,1)⊕su(1,1). New generating functions are derived from an operational representation which is alternative to the Rodrigues-type representation. The one-dimensional analogue of the disc polynomials which are orthogonal polynomials in the interval 0⩽ r⩽1 with weight factors (1− r 2) α are ultraspherical or Gegenbauer polynomials in a new standardization. The lowering and raising operators to the corresponding orthonormalized functions form a simple su(1,1) Lie algebra. This is given in the appendix in sketched form.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2004.04.004