Parallel Newton type methods for power system stability analysis using local and shared memory multiprocessors

Both the very dishonest Newton (VDHN) and the successive over relaxed (SOR) Newton algorithms have been implemented on the iPSC/2 and Alliant FX/8 computers for power system dynamic simulation using complex generator and nonlinear load models. The main thrust is to explore the match between the algo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 1991-11, Vol.6 (4), p.1539-1545
Hauptverfasser: Chai, J.S., Zhu, N., Bose, A., Tylavsky, D.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Both the very dishonest Newton (VDHN) and the successive over relaxed (SOR) Newton algorithms have been implemented on the iPSC/2 and Alliant FX/8 computers for power system dynamic simulation using complex generator and nonlinear load models. The main thrust is to explore the match between the algorithms, their implementation, and the machine architectures. For example, the less parallel but sequentially faster VDHN runs faster on the hypercube (iPSC/2) whereas the more parallel SOR-Newton requires data sharing more often because of the extra iterations and does better on the Alliant. The implementation on the hypercube requires significant manual programming to schedule the processors and their communication whereas the compiler in the Alliant recognizes parallel steps but only if the software is properly coded. The authors present these various considerations together with the results.< >
ISSN:0885-8950
1558-0679
DOI:10.1109/59.117001