Vegetation transition from meadow to forest reduces priming effect on SOM decomposition

Meadows and forests are the main vegetation types in temperate terrestrial ecosystems, and largely contribute to soil carbon (C) stock. Bioavailable C inputs can accelerate microbial decomposition of soil organic matter (SOM), which is known as “priming effect”. However, it is still unclear how prim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soil biology & biochemistry 2023-09, Vol.184, p.109123, Article 109123
Hauptverfasser: Liu, Hongfei, Banfield, Callum, Gomes, Sofia IF, Gube, Matthias, Weig, Alfons, Pausch, Johanna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Meadows and forests are the main vegetation types in temperate terrestrial ecosystems, and largely contribute to soil carbon (C) stock. Bioavailable C inputs can accelerate microbial decomposition of soil organic matter (SOM), which is known as “priming effect”. However, it is still unclear how priming effect, as an important mechanism influencing soil C sequestration, is influenced by spatial transition of vegetation from meadow to forest. To investigate the mechanism of priming effect along a spatial transition gradient of vegetation, a soil incubation experiment with 14C labeled glucose was combined with microbial rDNA sequencing and gene composition prediction. The results showed that with the vegetation transition from meadow to forest soil available phosphorus (P) significantly increased, in contrast to dissolved nitrogen (N) and C which remained unaffected. Moreover, the soil microbial community composition shifted towards a higher relative abundance of K-strategists (Acidobacteria) and a lower abundance of r-strategists (Actinobacteriota) along the vegetation transition from meadow to forest. In the meadow, the microbial community consumed more of the added glucose and increased priming effect. This was accompanied by lower available P but higher soil bacterial gene function encoding P cycling. In contrast, increased soil P availability in forest soils caused a decelerated microbial metabolism of phosphorylated organic compounds within microbial biomass due to decreased microbial demand for P acquisition from SOM, and thus resulted in suppression of the priming effect. Our study showed that P availability and microbial community shifts in spatial transition zones between meadows and forests are important drivers for the priming effect on SOM decomposition. •14C radioactive isotope labeling was applied in combination with microbial rDNA sequencing.•Soil microbial community in meadow consumed more of the added glucose than that in forest.•Vegetation transition from meadow to forest suppressed the priming effect.•P availability and microbial community shifts are important drivers for the priming effect.
ISSN:0038-0717
1879-3428
DOI:10.1016/j.soilbio.2023.109123