On the stability properties of polynomials with perturbed coefficients

Given a polynomial P_{c}(S) = S^{n} + t_{1}S^{n-1} + ... t_{n} = 0 which is Hurwitz or P_{d}(Z) = Z^{n} + t_{1}Z^{n-1} + ... t_{n} = 0 which has zeros only within or on the unit circle, it is of interest to know how much the coefficients t j can be perturbed while preserving the stability properties...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 1985-10, Vol.30 (10), p.1033-1036
Hauptverfasser: Soh, C., Berger, C., Dabke, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a polynomial P_{c}(S) = S^{n} + t_{1}S^{n-1} + ... t_{n} = 0 which is Hurwitz or P_{d}(Z) = Z^{n} + t_{1}Z^{n-1} + ... t_{n} = 0 which has zeros only within or on the unit circle, it is of interest to know how much the coefficients t j can be perturbed while preserving the stability properties. In this note, a method is presented for obtaining the largest hypersphere centered at t^{T} = [t_{1} ... t_{n}] containing only polynomials which are stable.
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.1985.1103807