Pulsewidth and rising time of relativistic electron beam in gas-filled diode

The pulsewidth and rising time of a mildly relativistic electron beam (300 kV, 1-3 kA) passing through a gas-filled diode region are investigated experimentally under various gas pressures P. The pulsewidth and rising time of a relativistic electron beam (REB) were controlled by adjusting the gas pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on plasma science 1997-04, Vol.25 (2), p.400-404
Hauptverfasser: Ko, J.J., Choi, E.H., Choi, M.C., Yoonho Seo, Cho, G.S., Shin, H.M., Uhm, H.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The pulsewidth and rising time of a mildly relativistic electron beam (300 kV, 1-3 kA) passing through a gas-filled diode region are investigated experimentally under various gas pressures P. The pulsewidth and rising time of a relativistic electron beam (REB) were controlled by adjusting the gas pressures P of the diode region. The pulsewidth and rising time of the relativistic electron beam are experimentally found to scale as P/sup -0.807/spl plusmn/0.054/ and P/sup -0.770/spl plusmn/0.058/, respectively. The REB pulsewidth and rising time are shown to have the same scaling law, within the experimental error range as a function of pressure. In particular, the empirical scaling law of the REB pulsewidth is in remarkably good agreement with the numerical scaling law P/sup -0.809/spl plusmn/0.059/ of the full-space charge neutralization time t/sub n/ at which the ion density n/sub i/ is just equal to the electron beam density n/sub b/ at the diode region under a given gas pressure P. It also is found that ion density n/sub i/ at the full space-charge neutralization time t/sub n/ has quite a similar profile in terms of pressure P to that of the REB peak current detected by a Faraday cup.
ISSN:0093-3813
1939-9375
DOI:10.1109/27.602518