Podality-based time-optimal computations on enhanced meshes

The main contribution of this paper is to present simple and elegant podality-based algorithms for a variety of computational tasks motivated by, and finding applications to, pattern recognition, computer graphics, computational morphology, image processing, robotics, computer vision, and VLSI desig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on parallel and distributed systems 1997-10, Vol.8 (10), p.1019-1035
Hauptverfasser: Bokka, V., Gurla, H., Olariu, S., Schwing, J.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main contribution of this paper is to present simple and elegant podality-based algorithms for a variety of computational tasks motivated by, and finding applications to, pattern recognition, computer graphics, computational morphology, image processing, robotics, computer vision, and VLSI design. The problems that we address involve computing the convex hull, the diameter, the width, and the smallest area enclosing rectangle of a set of points in the plane, as well as the problems of finding the maximum Euclidian distance between two planar sets of points, and of constructing the Minkowski sum of two convex polygons. Specifically, we show that once we fix a positive constant /spl epsiv/, all instances of size m, (n/sup 1/2 +/spl epsiv///spl les/m/spl les/n) of the problems above, stored in the first [m//spl radic/n] columns of a mesh with multiple broadcasting of size /spl radic/n/spl times//spl radic/n can be solved time-optimally in /spl Theta/(m//spl radic/n) time.
ISSN:1045-9219
1558-2183
DOI:10.1109/71.629485