A universal large/small signal 3-terminal FET model using a nonquasistatic charge-based approach
Introduces a charge-based nonquasistatic large/small signal FET model that is extracted from measured small signal S-parameter and DC data and can be applied to an arbitrary three-terminal FET structure. The model is based on general physical principles, and provides consistent topologies for both l...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 1993-10, Vol.40 (10), p.1723-1729 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Introduces a charge-based nonquasistatic large/small signal FET model that is extracted from measured small signal S-parameter and DC data and can be applied to an arbitrary three-terminal FET structure. The model is based on general physical principles, and provides consistent topologies for both large and small signal simulations to frequencies above f/sub t/ and over a wide range of node voltages. The procedure for extracting model elements includes deembedding linear parasitic elements and extracting bicubic, B-spline functions, which represent large signal model elements. The spline coefficients are calculated using a constrained least squares fit to a set of small signal parameters and/or DC currents that have been measured at a number of node voltage values. Advantages of this approach include fast parameter extraction for new FET structures, accuracy, computational efficiency, charge conservation, and the requirement of only a single model for all simulation modes. The model can also be used to interface device simulators (e.g., PISCES) with circuit simulators for accurate predictive modeling.< > |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/16.277326 |