A Newton-squaring algorithm for computing the negative invariant subspace of a matrix

By combining Newton's method for the matrix sign function with a squaring procedure, a basis for the negative invariant subspace of a matrix can be computed efficiently. The algorithm presented is a variant of multiplication-rich schemes for computing the matrix sign function, such as the well-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 1993-08, Vol.38 (8), p.1284-1289
Hauptverfasser: Kenney, C.S., Laub, A.J., Papadopoulos, P.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By combining Newton's method for the matrix sign function with a squaring procedure, a basis for the negative invariant subspace of a matrix can be computed efficiently. The algorithm presented is a variant of multiplication-rich schemes for computing the matrix sign function, such as the well-known inversion-free Schulz method, which requires two matrix multiplications per step. However, by avoiding a complete computation of the matrix sign and instead concentrating only on the negative invariant subspace, the final Newton steps can be replaced by steps which require only one matrix squaring each. This efficiency is attained without sacrificing the quadratic convergence of Newton's method.< >
ISSN:0018-9286
1558-2523
DOI:10.1109/9.233171