A Ce-MOF@polydopamine composite nanozyme as an efficient scavenger for reactive oxygen species and iron in thalassemia disease therapy

Patients with β-thalassemia are prone to complications such as cardiovascular diseases and secretory gland injury due to iron overload (IO) and reactive oxygen species (ROS) production caused by blood transfusions. Simultaneously scavenging ROS and eliminating IO using nanomedicine remains challengi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2023-08, Vol.15 (33), p.13574-13582
Hauptverfasser: Duan, Yan, Liang, Ling, Ye, Fanggui, Zhao, Shulin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Patients with β-thalassemia are prone to complications such as cardiovascular diseases and secretory gland injury due to iron overload (IO) and reactive oxygen species (ROS) production caused by blood transfusions. Simultaneously scavenging ROS and eliminating IO using nanomedicine remains challenging. Herein, we designed a dual-functional Ce-based metal-organic framework@polydopamine (Ce-MOF@PDA) composite that integrates oxidative stress reduction and IO elimination and evaluated its protective effect on IO injury in thalassemia. Using Ce-MOF with multiple active sites as the core, dopamine, which can coordinate iron ions, was modified on the surface of Ce-MOF and spontaneously polymerized to obtain PDA with iron elimination ability. Dopamine modification also adjusted the Ce 3+ /Ce 4+ ratio to further enhance the catalytic activity for scavenging ROS. Ce-MOF@PDA exhibited multiple nanozyme activities, such as superoxide dismutase- and catalase-like activities, and decreased iron-mediated oxidative stress levels in vitro . Furthermore, the serum ferritin levels and iron concentrations in the liver of IO mice were reduced following treatment with Ce-MOF@PDA, and the fecal clearance ability was comparable to that of deferoxamine. These results indicate that Ce-MOF@PDA can eliminate IO while scavenging ROS and reduce tissue damage caused by oxidative stress. Therefore, the Ce-MOF@PDA nanozyme is a promising therapeutic nanomedicine for treating thalassemia IO. A Ce-MOF@PDA composite material with both iron-eliminating and antioxidant properties was developed.
ISSN:2040-3364
2040-3372
DOI:10.1039/d3nr01971c