Cavity-Enhanced Fluorescence in Colliding Droplets of Rhodamine 6G Aqueous Solutions

A liquid droplet can act as a microscale high-Q optical cavity via a whispering gallery mode, where light resonates with enhanced intensity. A collision of two droplets temporarily exhibits a unique morphology, which provides a more effective optical cavity than a single droplet. We investigated the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2023-09, Vol.127 (36), p.7605-7611
Hauptverfasser: Kamoshita, Aya, Kohno, Jun-ya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A liquid droplet can act as a microscale high-Q optical cavity via a whispering gallery mode, where light resonates with enhanced intensity. A collision of two droplets temporarily exhibits a unique morphology, which provides a more effective optical cavity than a single droplet. We investigated the mechanisms of cavity-enhanced fluorescence in colliding droplets of aqueous rhodamine 6G. Laser-excited spectra and fluorescence generation times were acquired. The fluorescence spectra had two peaks: one attributed to amplified spontaneous emission (ASE) and the other to lasing. The lasing generation time had a longer delay relative to that of ASE, which indicated that it required a longer propagation distance for the positive feedback. Overall, this provides a basis for the development of a highly efficient dye laser using colliding droplets.
ISSN:1089-5639
1520-5215
DOI:10.1021/acs.jpca.3c03667