Approaching Ohmic Contacts for Ideal Monolayer MoS2 Transistors Through Sulfur-Vacancy Engineering

Field-effect transistors (FETs) made of monolayer 2D semiconductors (e.g., MoS2 ) are among the basis of the future modern wafer chip industry. However, unusually high contact resistances at the metal-semiconductor interfaces have seriously limited the improvement of monolayer 2D semiconductor FETs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small methods 2023-11, Vol.7 (11), p.e2300611-e2300611
Hauptverfasser: Xiao, Jiankun, Chen, Kuanglei, Zhang, Xiankun, Liu, Xiaozhi, Yu, Huihui, Gao, Li, Hong, Mengyu, Gu, Lin, Zhang, Zheng, Zhang, Yue
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Field-effect transistors (FETs) made of monolayer 2D semiconductors (e.g., MoS2 ) are among the basis of the future modern wafer chip industry. However, unusually high contact resistances at the metal-semiconductor interfaces have seriously limited the improvement of monolayer 2D semiconductor FETs so far. Here, a high-scale processable strategy is reported to achieve ohmic contact between the metal and monolayer MoS2 with a large number of sulfur vacancies (SVs) by using simple sulfur-vacancy engineering. Due to the successful doping of the contact regions by introducing SVs, the contact resistance of monolayer MoS2 FET is as low as 1.7 kΩ·µm. This low contact resistance enables high-performance MoS2 FETs with ultrahigh carrier mobility of 153 cm2 V-1 s-1 , a large on/off ratio of 4 × 109 , and high saturation current of 342 µA µm-1 . With the comprehensive investigation of different SV concentrations by adjusting the plasma duration, it is also demonstrated that the SV-increased electron doping, with its resulting reduced Schottky barrier, is the dominant factor driving enhanced electrical performance. The work provides a simple method to promote the development of industrialized atomically thin integrated circuits.
ISSN:2366-9608
DOI:10.1002/smtd.202300611