An integrated friction model structure with improved presliding behavior for accurate friction compensation

Presents a dynamical friction model structure which allows accurate modeling both in the sliding and the presliding regimes. Transition between these two regimes is accomplished without a switching function. The model incorporates a hysteresis function with nonlocal memory and arbitrary transition c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2000-04, Vol.45 (4), p.675-686
Hauptverfasser: Swevers, J., Al-Bender, F., Ganseman, C.G., Projogo, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Presents a dynamical friction model structure which allows accurate modeling both in the sliding and the presliding regimes. Transition between these two regimes is accomplished without a switching function. The model incorporates a hysteresis function with nonlocal memory and arbitrary transition curves. These last aspects prove essential for modeling presliding friction that is encountered in real physical situations. The model as a whole can also handle the Stribeck effect and stick-slip behavior as has been demonstrated by validation on a KUKA IR 361 robot. In this sense, this model can be considered as more complete in comparison with others found in the literature. The general friction model allows modeling of individual friction systems through the identification of a set of parameters that determine the complete behavior of the system. In this way, the model structure has been used to identify the friction behavior of a linear slide as well as that of the above mentioned KUKA robot. The results of the latter identification have been consequently used for feedforward friction compensation to obtain the most accurate tracking.
ISSN:0018-9286
1558-2523
DOI:10.1109/9.847103