IU1 and enzalutamide combination yields synergistic effects on castration-resistant prostate cancer

Androgen deprivation therapy (ADT) is one of the main treatment modalities for prostate cancer (PCa); however, almost all patients treated with ADT eventually progress into castration-resistant PCa (CRPC). Although second-generation androgen receptor (AR) antagonists, such as enzalutamide, have been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Prostate 2023-11, Vol.83 (15), p.1446-1457
Hauptverfasser: Zhang, Yifan, Liao, Yuanpeng, Luo, Mayao, Ye, Yuedian, Xu, Zhuofan, Hou, Wenli, Liu, Ruiyu, Zhai, Qiliang, Lv, Shidong, Wei, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Androgen deprivation therapy (ADT) is one of the main treatment modalities for prostate cancer (PCa); however, almost all patients treated with ADT eventually progress into castration-resistant PCa (CRPC). Although second-generation androgen receptor (AR) antagonists, such as enzalutamide, have been approved for CRPC treatment, AR signaling in CRPC cells is reactivated through multiple mechanisms, resulting in resistance to treatment and tumor progression with a very poor prognosis. The present study aimed to explore the anticancer effect of a treatment combining AR antagonist enzalutamide with AR degrader IU1 on PCa cells. The joint effects of enzalutamide and IU1 on PCa cell proliferation and apoptosis and associated cell signaling were evaluated in vitro. Mechanistically, the ubiquitination level and half-life of AR were examined under the combination treatment. The binding of IU1 and enzalutamide to AR was further verified using cellular thermal shift analysis and isothermal dose-response curve fingerprinting. The combination of IU1 and three AR antagonists showed synergistic effects in different prostate cell lines. IU1 and enzalutamide synergistically promoted the degradation of AR and AR-V7 proteins, as well as suppressed the expression levels of AR and AR-V7 downstream target genes at the transcriptional and protein levels. The combination also synergistically blocked the PCa cell cycle and promoted apoptosis in PCa cell lines. Mechanistically, the combination promoted increased levels of AR ubiquitination. In CRPC cell lines and in the presence of increased androgen concentrations, enzalutamide was still able to bind AR competitively with androgens, reducing the stability of AR and thus promoting the degradation effect of IU1 on AR, synergistically producing an inhibitory effect on PCa cells. Taken together, our findings suggest that the combination of AR degrader and enzalutamide potentially represents a new therapeutic strategy for CRPC.
ISSN:0270-4137
1097-0045
DOI:10.1002/pros.24607