Tough polyvinyl alcohol-gelatin biological macromolecules ionic hydrogel temperature, humidity, stress and strain, sensors
High strength, high toughness and high sensitivity were some of the most popular characteristics of flexible sensors. However, the mechanical properties and reproducibility of current single biomacromolecule gelatin hydrogel sensors are lower, and few hydrogel sensors have been able to provide excel...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2023-09, Vol.249, p.125978-125978, Article 125978 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High strength, high toughness and high sensitivity were some of the most popular characteristics of flexible sensors. However, the mechanical properties and reproducibility of current single biomacromolecule gelatin hydrogel sensors are lower, and few hydrogel sensors have been able to provide excellent mechanical properties and flexibility at the same time so far. To address this challenge, a simple method to prepare tough polyvinyl alcohol (PVA) and gelatin hydrogel was proposed in this study. The PVA-gelatin-Fe3+ biological macromolecules hydrogel was prepared by a freeze-casting-assisted solution substitution method, which exhibited high strength (2.5 MPa), toughness (7.22 MJ m−3), and excellent temperature, humidity, stress, strain, and human motion sensing properties. This combination of mechanical properties and flexibility makes PVA-gelatin biological macromolecules hydrogel a promising material for flexible sensing. In addition, an ionic immersion strategy could also impart multiple functions to the hydrogel and be applied to various hydrogel sensor materials. Thus, this work provided an all-around solution for the preparation of advanced and robust sensors with good application prospects.
[Display omitted]
•Enhanced hydrogel mechanical properties assisted by ethanol solvent replacement and multiple ionic immersion methods.•The hydrogel is capable of lifting 15 kg buckets of water.•The prepared hydrogel is a multifunctional sensor that can detect pressure/strain, humidity, temperature, and human motion. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2023.125978 |