A thermodynamic analysis of a novel high efficiency reciprocating internal combustion engine—the isoengine
A novel concept for a high efficiency reciprocating internal combustion engine (the isoengine) is described and its cycle is analysed. The highly turbocharged engine configuration, which is intended primarily for on-site and distributed power generation, has a predicted electrical output of 7.3 MW....
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2004-10, Vol.29 (12), p.2585-2600 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel concept for a high efficiency reciprocating internal combustion engine (the isoengine) is described and its cycle is analysed. The highly turbocharged engine configuration, which is intended primarily for on-site and distributed power generation, has a predicted electrical output of 7.3 MW. It has the option for co-generation of up to 3.2 MW of hot water at 95 °C supply temperature. The maximum net electrical plant efficiency is predicted to be about 60% on diesel fuel and 58% on natural gas. The key to the high electrical efficiency is the quasi-isothermal compression of the combustion air in cylinders, which are separate from the power cylinders. This achieves a significant saving in compression work and allows the recovery of waste heat back into the cycle, mainly from the exhaust gas by means of a recuperator. The construction of a first 3 MW
e prototype isoengine has been completed and its testing has begun. Relevant test results are expected in the near future. |
---|---|
ISSN: | 0360-5442 |
DOI: | 10.1016/j.energy.2004.05.014 |