Time-dependent fundamental solutions for homogeneous diffusion problems

This paper describes the applications of the method of fundamental solutions (MFS) for 1-, 2- and 3-D diffusion equations. The time-dependent fundamental solutions for diffusion equations are used directly to obtain the solution as a linear combination of the fundamental solution of the diffusion op...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering analysis with boundary elements 2004-12, Vol.28 (12), p.1463-1473
Hauptverfasser: Young, D.L., Tsai, C.C., Murugesan, K., Fan, C.M., Chen, C.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes the applications of the method of fundamental solutions (MFS) for 1-, 2- and 3-D diffusion equations. The time-dependent fundamental solutions for diffusion equations are used directly to obtain the solution as a linear combination of the fundamental solution of the diffusion operator. The proposed scheme is free from the conventionally used Laplace transform or the finite difference scheme to deal with the time derivative of the governing equation. By properly placing the field points and the source points at a given time level, the solution is advanced in time until steady state solutions are reached. Test results obtained for 1-, 2- and 3-D diffusion problems show good comparisons with the analytical solutions and some with the MFS based on the modified Helmholtz fundamental solutions, thus the demonstration present numerical scheme of MFS with the space–time unification has been demonstrated as a promising mesh-free numerical tool to solve homogeneous diffusion problem.
ISSN:0955-7997
1873-197X
DOI:10.1016/j.enganabound.2004.07.003