High-Efficiency Ce3+ Activated Orthorhombic Lanthanide Silicate Blue Phosphors for Plant Growth Lighting

Plant growth can be controlled and freed from natural environmental interference through indoor plant cultivation. Artificial light sources with better quality are required to promote indoor plant growth. In this study, we used a simple high-temperature solid-state reaction to synthesize high-effici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2023-08, Vol.62 (32), p.12793-12802
Hauptverfasser: Wu, Meihua, Wei, Haichao, Huang, Ximing, Liu, Qiyun, Duan, Shengzhi, Liu, Yifei, Mi, Ruiyu, Min, Xin, Huang, Zhaohui, Zhang, Wen, Cao, Peng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Plant growth can be controlled and freed from natural environmental interference through indoor plant cultivation. Artificial light sources with better quality are required to promote indoor plant growth. In this study, we used a simple high-temperature solid-state reaction to synthesize high-efficiency Ce3+-activated NaGdSiO4 (NGSO) phosphors. X-ray diffraction and Rietveld refinement were performed to determine the detailed crystal structure of the NGSO:Ce3+ phosphors. The morphology of NGSO:Ce3+ and the elemental state of Ce3+ were measured and analyzed. Under near-ultraviolet (n-UV) light excitation, the Ce3+-activated NGSO phosphors exhibit a broad emission band from 375 to 500 nm, and their emission peaks are at approximately 401 nm. This asymmetrical blue emission band is caused by the spin-allowed 5d → 4f transition of Ce3+ and overlaps well with the blue absorption region of carotenoids and chlorophyll. The temperature-dependent luminescence spectra were utilized to assess the thermal stability of NGSO:Ce3+. The external quantum efficiency (EQE) was measured to be 60.91%, and the internal quantum efficiency (IQE) was measured to be 73.39%. A blue LED device assembled from the NGSO:Ce3+ phosphor has demonstrated the application potential in accelerating plant growth.
ISSN:0020-1669
1520-510X
DOI:10.1021/acs.inorgchem.3c01347