Tunable, coherent optical comb source via on-chip bidirectional coupling
A tunable comb source is demonstrated through gain switching on a three-sectioned photonic integrated circuit (PIC). The PIC consists of two mutually coupled lasers connected by a passive waveguide. One of these is a tunable, two-section, single mode laser. The second laser is a simple Fabry-Perot c...
Gespeichert in:
Veröffentlicht in: | Optics letters 2023-08, Vol.48 (15), p.4137-4140 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A tunable comb source is demonstrated through gain switching on a three-sectioned photonic integrated circuit (PIC). The PIC consists of two mutually coupled lasers connected by a passive waveguide. One of these is a tunable, two-section, single mode laser. The second laser is a simple Fabry-Perot cavity laser which can be phase-locked with the single mode laser via bidirectional coupling. Frequency combs are produced by gain switching the Fabry-Perot laser by applying a high-power radio frequency signal. Combs are generated with line spacings ranging from 3.5 to 8 GHz. The on-chip bidirectional coupling causes the comb to also be generated in the two-section device. Despite the lack of on-chip optical isolation between the lasers, the resulting combs are stable. Numerical simulations using a delay-differential model reproduce the results and reveal the important role played by the short delay times inherent to on-chip integration in this stability. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.492230 |