Acidifying Spray Suspensions of Oxytetracycline and Kasugamycin Enhances Their Effectiveness for Fire Blight Control in Apple and Pear

The stability of the fire blight control material, oxytetracycline, in water is strongly affected by pH, increasing with increasing acidity. From 2017 to 2021, pear and apple orchard trials were conducted to evaluate if acidic amendments to oxytetracycline sprays improve fire blight control. Compare...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phytopathology 2023-12, Vol.113 (12), p.PHYTO04230122R-2214
Hauptverfasser: Johnson, Kenneth B, Temple, Todd N, Kc, Achala N
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The stability of the fire blight control material, oxytetracycline, in water is strongly affected by pH, increasing with increasing acidity. From 2017 to 2021, pear and apple orchard trials were conducted to evaluate if acidic amendments to oxytetracycline sprays improve fire blight control. Compared with the water-treated control, infection suppression after two bloom applications of an acidified commercial oxytetracycline formulation averaged 85.9 ± 0.4% compared with 72.2 ± 1.7% without an acidifier, but individual trials frequently had insufficient statistical power to separate among acidified and non-acidified antibiotic treatments. Across trials, a significant linear relationship was observed for regression of relative infection suppression from oxytetracycline (hydrochloride formulation) on spray tank pH. Similar relationships were observed for oxytetracycline (calcium complex formulation) and kasugamycin ( values were 0.055 and 0.069, respectively). Also based on regression, acidified oxytetracycline and kasugamycin suppressed epiphytic populations of on flowers to a greater degree than the antibiotic only. As spray suspensions, commercial oxytetracycline formulations at label rate and amended with citric acid (1.2 g/liter) in well water had pH values near 3.4, but after spraying, the pH of flowers washed in deionized water (1 ml/flower) measured in a range of 5.2 to 5.5 compared with a pH range of 5.8 to 6.0 after a treatment of oxytetracycline only. In pear fruit finish trials, sprays acidified with citric acid-based materials had negligible effects on fruit russeting. Based on a serological assay, the detectable residual of oxytetracycline on apple foliage was increased by co-application with citric acid compared with a non-acidified control.
ISSN:0031-949X
1943-7684
DOI:10.1094/PHYTO-04-23-0122-R