Introduction to the modified probabilistic neural network for general signal processing applications

This paper introduces a practical and easy-to-understand network for signal processing called the modified probabilistic neural network (MPNN). It begins with a short introduction to the application of artificial neural networks to signal processing followed by a background and review of the MPNN th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 1998-07, Vol.46 (7), p.1980-1990
1. Verfasser: Zaknich, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces a practical and easy-to-understand network for signal processing called the modified probabilistic neural network (MPNN). It begins with a short introduction to the application of artificial neural networks to signal processing followed by a background and review of the MPNN theory. The MPNN is a regression technique similar to Specht's (1991) general regression neural network, which is based on a single radial basis function kernel whose bandwidth is related to the noise statistics. It has advantages in application to time and spatial series signal processing problems because it is constructed directly and simply from the training signal waveform characteristics or features. An illustrative example involving noisy Doppler-shifted swept frequency sonar signal detection compares the effectiveness of the first- and second-order Volterra, multilayer perceptron neural network, radial basis function neural network, general regression neural network and MPNN filters, demonstrating some features of the MPNN for practical design.
ISSN:1053-587X
1941-0476
DOI:10.1109/78.700969