An unsupervised, on-line system for induction motor fault detection using stator current monitoring
A new method for online induction motor fault detection is presented in this paper. This system utilizes artificial neural networks to learn the spectral characteristics of a good motor operating online. This learned spectrum may contain many harmonics due to the load which correspond to normal oper...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industry applications 1995-11, Vol.31 (6), p.1280-1286 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new method for online induction motor fault detection is presented in this paper. This system utilizes artificial neural networks to learn the spectral characteristics of a good motor operating online. This learned spectrum may contain many harmonics due to the load which correspond to normal operating conditions. In order to reduce the number of harmonics which are continuously monitored to a manageable number, a selective frequency filter is employed. This frequency filter only passes those harmonics which are known to be of importance in fault detection, or which are continuously above a set level, to a neural net clustering algorithm. After a sufficient training period, the neural network signals a potential failure condition when a new cluster is formed and persists for some time. Since a fault condition is found by comparison to a prior condition of the machine, online failure prediction is possible with this system without requiring information on the motor or load characteristics. The detection algorithm was implemented and its performance verified on various fault types. |
---|---|
ISSN: | 0093-9994 1939-9367 |
DOI: | 10.1109/28.475698 |