Artificial sound impact could put at risk hermit crabs and their symbiont anemones

The sea anemone Calliactis parasitica, which is found in the East Atlantic (Portugal to Senegal) and the Mediterranean Sea, forms a symbiotic relationship with the red hermit crab, Dardanus calidus, in which the anemone provides protection from predators such as the octopus while it gains mobility,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2023-11, Vol.900, p.165756-165756, Article 165756
Hauptverfasser: Solé, Marta, De Vreese, Steffen, Fortuño, José-Manuel, van der Schaar, Mike
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The sea anemone Calliactis parasitica, which is found in the East Atlantic (Portugal to Senegal) and the Mediterranean Sea, forms a symbiotic relationship with the red hermit crab, Dardanus calidus, in which the anemone provides protection from predators such as the octopus while it gains mobility, and possibly food scraps, from the hermit crab. Acoustic pollution is recognised by the scientific community as a growing threat to ocean inhabitants. Recent findings on marine invertebrates showed that exposure to artificial sound had direct behavioural, physiological and ultrastructural consequences. In this study we assess the impact of artificial sound (received level 157 ± 5 dB re 1 μPa2 with peak levels up to 175 dB re 1 μPa2) on the red hermit crab and its symbiotic sea anemone. Scanning electron microscopy analyses revealed lesions in the statocyst of the red hermit crab and in the tentacle sensory epithelia of its anemone when exposed to low-intensity, low-frequency sounds. These ultrastructural changes under situations of acoustic stress in symbiotic partners belonging to different phyla is a new issue that may limit their survival capacity, and a new challenge in assessing the effects of acoustic disturbance in the oceanic ecosystem. Despite the lesions found in the red hermit crab, its righting reflex time was not as strongly affected showing only an increase in the range of righting times. Given that low-frequency sound levels in the ocean are increasing and that reliable bioacoustic data on invertebrates is very scarce, in light of the results of the present study, we argue that anthropogenic sound effects on invertebrates species may have direct consequences in the entire ecosystem. [Display omitted] •Marine benthic ecosystems biodiversity challenged by acoustic stress on hermit crabs and its anemones.•Acoustic stress may limit the survival capacity of hermit crabs and its symbiont anemones.•Hermit crab and anemone sensory epithelia presented damage after sound exposure.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2023.165756