Thermal Elastic–Plastic Stress Analysis of Aluminum Metal–Matrix Composite Laminated Plates Under a Parabollically Temperature Distribution

In this study, a thermal elastic–plastic stress analysis is carried out on steel-fiberreinforced aluminum metal–matrix composite laminated plates fixed at all edges. Temperature is chosen to vary parabollically. It is zero and T0 on the middle axis and at the upper–lower surfaces, respectively. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of reinforced plastics and composites 2004-01, Vol.23 (2), p.177-193
Hauptverfasser: Topcu, Muzaffer, Öndurücü, Ayse
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, a thermal elastic–plastic stress analysis is carried out on steel-fiberreinforced aluminum metal–matrix composite laminated plates fixed at all edges. Temperature is chosen to vary parabollically. It is zero and T0 on the middle axis and at the upper–lower surfaces, respectively. The solution is executed for symmetric cross-ply (0° /90°)2 and angle-ply (30° / -30°)2, (45° / -45°)2, (60° / -60°)2 laminated plates. The elastic–plastic solution is carried out for small plastic deformations. The Tsai–Hill Theory is used as a yield criterion. Residual stress distributions along the thickness of the plates are obtained. All the residual stress components are in static balance with respect to middle plane of the laminates since they are symmetric in opposite signs.
ISSN:0731-6844
1530-7964
DOI:10.1177/0731684404030664