An epitaxial emitter-cap SiGe-base bipolar technology optimized for liquid-nitrogen temperature operation
We give the first demonstration that a properly designed silicon bipolar technology can achieve faster unloaded circuit speed at liquid-nitrogen temperature than at room temperature. Transistors were fabricated using a reduced-temperature process employing an in situ arsenic-doped polysilicon emitte...
Gespeichert in:
Veröffentlicht in: | IEEE electron device letters 1994-11, Vol.15 (11), p.472-474 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give the first demonstration that a properly designed silicon bipolar technology can achieve faster unloaded circuit speed at liquid-nitrogen temperature than at room temperature. Transistors were fabricated using a reduced-temperature process employing an in situ arsenic-doped polysilicon emitter contact, a lightly phosphorus-doped epitaxial emitter-cap layer, and a graded SiGe base. At 84 K, transistors have a current gain of 500, with a cutoff frequency of 61 GHz, and a maximum oscillation frequency of 50 GHz. ECL circuits switch at a record 21.9 ps at 84 K, 3.5-ps faster than at room temperature. Circuits which were optimized for low-power operation achieve a minimum power-delay product of 61 fJ (41.3 ps at 1.47 mW), nearly a factor of two smaller than the best achieved to date at 84 K. The unprecedented performance of these transistors suggests that SiGe-base bipolar technology is a promising candidate for cryogenic applications requiring the fastest possible devices together with the processing maturity and integration level achievable with silicon fabrication.< > |
---|---|
ISSN: | 0741-3106 1558-0563 |
DOI: | 10.1109/55.334671 |