Understanding the Effect of Single Atom Cationic Defect Sites in an Al2O3 (012) Surface on Altering Selenate and Sulfate Adsorption: An Ab Initio Study

Adsorption is a promising under-the-sink selenate remediation technique for distributed water systems. Recently it was shown that adsorption induced water network rearrangement control adsorption energetics on the α-Al2O3 (012) surface. Here, we aim to elucidate the relative importance of the water...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2023-04, Vol.127 (14), p.6925-6937
Hauptverfasser: Gupta, Srishti, Chismar, Adam, Muhich, Christopher
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Adsorption is a promising under-the-sink selenate remediation technique for distributed water systems. Recently it was shown that adsorption induced water network rearrangement control adsorption energetics on the α-Al2O3 (012) surface. Here, we aim to elucidate the relative importance of the water network effects and surface cation identity on controlling selenate and sulfate adsorption energy using density functional theory calculations. Density functional theory (DFT) calculations predicted the adsorption energies of selenate and sulfate on nine transition metal cations (Sc–Cu) and two alkali metal cations (Ga and In) in the α-Al2O3 (012) surface under simulated acidic and neutral pH conditions. We find that the water network effects had a larger impact on the adsorption energy than the cationic identity. However, cation identity secondarily controlled adsorption. Most cations decreased the adsorption energy, weakening the overall performance, the larger Sc and In cations enabled inner-sphere adsorption in acidic conditions because they relaxed outward from the surface, providing more space for adsorption. Additionally, only Ti induced Se selectivity over S by reducing the adsorbing selenate to selenite but not reducing the sulfate. Overall, this study indicates that tuning water network structure will likely have a larger impact than tuning cation–selenate interactions for increasing adsorbate effectiveness.
ISSN:1932-7447
1932-7455
DOI:10.1021/acs.jpcc.3c00098