ANNSTLF-a neural-network-based electric load forecasting system
A key component of the daily operation and planning activities of an electric utility is short-term load forecasting, i.e., the prediction of hourly loads (demand) for the next hour to several days out. The accuracy of such forecasts has significant economic impact for the utility. This paper descri...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on neural networks 1997, Vol.8 (4), p.835-846 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 846 |
---|---|
container_issue | 4 |
container_start_page | 835 |
container_title | IEEE transactions on neural networks |
container_volume | 8 |
creator | Khotanzad, A. Afkhami-Rohani, R. Tsun-Liang Lu Abaye, A. Davis, M. Maratukulam, D.J. |
description | A key component of the daily operation and planning activities of an electric utility is short-term load forecasting, i.e., the prediction of hourly loads (demand) for the next hour to several days out. The accuracy of such forecasts has significant economic impact for the utility. This paper describes a load forecasting system known as ANNSTLF (artificial neural-network short-term load forecaster) which has received wide acceptance by the electric utility industry and presently is being used by 32 utilities across the USA and Canada. ANNSTLF can consider the effect of temperature and relative humidity on the load. Besides its load forecasting engine, ANNSTLF contains forecasters that can generate the hourly temperature and relative humidity forecasts needed by the system. ANNSTLF is based on a multiple ANN strategy that captures various trends in the data. Both the first and the second generation of the load forecasting engine are discussed and compared. The building block of the forecasters is a multilayer perceptron trained with the error backpropagation learning rule. An adaptive scheme is employed to adjust the ANN weights during online forecasting. The forecasting models are site independent and only the number of hidden layer nodes of ANN's need to be adjusted for a new database. The results of testing the system on data from ten different utilities are reported. |
doi_str_mv | 10.1109/72.595881 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28436515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>595881</ieee_id><sourcerecordid>28436515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-fe76501840ee6dc053f39bb936d3040577ec6aad67017151baf37ed12e14aa6c3</originalsourceid><addsrcrecordid>eNqF0U1Lw0AQBuBFFFurB68eJCfFQ-rMfiYnKcWqUOrBeg6bzUSiaVN3U6T_3kiL3uxpBuaZ9_Iydo4wRIT01vChSlWS4AHrYyoxBkjFYbeDVHHKuemxkxDeAVAq0MeshwlXSiemz-5Gs9nLfDqJbbSktbd1vKT2q_EfcW4DFRHV5FpfuahubBGVjSdnQ1st36KwCS0tTtlRaetAZ7s5YK-T-_n4MZ4-PzyNR9PYSSXauCSjFWAigUgXDpQoRZrnqdCFAAnKGHLa2kIbQIMKc1sKQwVyQmmtdmLArre5K998rim02aIKjuraLqlZh8wIyRWqhHfy6l_JEyl0R_dDw6U0sD8RNRgl0XTwZgudb0LwVGYrXy2s32QI2U9TmeHZtqnOXu5C1_mCij-5q6YDF1tQEdHveff9DcOok84</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16075417</pqid></control><display><type>article</type><title>ANNSTLF-a neural-network-based electric load forecasting system</title><source>IEEE Xplore (Online service)</source><creator>Khotanzad, A. ; Afkhami-Rohani, R. ; Tsun-Liang Lu ; Abaye, A. ; Davis, M. ; Maratukulam, D.J.</creator><creatorcontrib>Khotanzad, A. ; Afkhami-Rohani, R. ; Tsun-Liang Lu ; Abaye, A. ; Davis, M. ; Maratukulam, D.J.</creatorcontrib><description>A key component of the daily operation and planning activities of an electric utility is short-term load forecasting, i.e., the prediction of hourly loads (demand) for the next hour to several days out. The accuracy of such forecasts has significant economic impact for the utility. This paper describes a load forecasting system known as ANNSTLF (artificial neural-network short-term load forecaster) which has received wide acceptance by the electric utility industry and presently is being used by 32 utilities across the USA and Canada. ANNSTLF can consider the effect of temperature and relative humidity on the load. Besides its load forecasting engine, ANNSTLF contains forecasters that can generate the hourly temperature and relative humidity forecasts needed by the system. ANNSTLF is based on a multiple ANN strategy that captures various trends in the data. Both the first and the second generation of the load forecasting engine are discussed and compared. The building block of the forecasters is a multilayer perceptron trained with the error backpropagation learning rule. An adaptive scheme is employed to adjust the ANN weights during online forecasting. The forecasting models are site independent and only the number of hidden layer nodes of ANN's need to be adjusted for a new database. The results of testing the system on data from ten different utilities are reported.</description><identifier>ISSN: 1045-9227</identifier><identifier>EISSN: 1941-0093</identifier><identifier>DOI: 10.1109/72.595881</identifier><identifier>PMID: 18255687</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Atmospheric humidity ; Backpropagation ; Economic forecasting ; Electric utilities ; Engines ; Humidity ; Load forecasting ; Multilayer perceptrons ; Neural networks ; Power industry ; Predictive models ; Temperature</subject><ispartof>IEEE transactions on neural networks, 1997, Vol.8 (4), p.835-846</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-fe76501840ee6dc053f39bb936d3040577ec6aad67017151baf37ed12e14aa6c3</citedby><cites>FETCH-LOGICAL-c453t-fe76501840ee6dc053f39bb936d3040577ec6aad67017151baf37ed12e14aa6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/595881$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/595881$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18255687$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khotanzad, A.</creatorcontrib><creatorcontrib>Afkhami-Rohani, R.</creatorcontrib><creatorcontrib>Tsun-Liang Lu</creatorcontrib><creatorcontrib>Abaye, A.</creatorcontrib><creatorcontrib>Davis, M.</creatorcontrib><creatorcontrib>Maratukulam, D.J.</creatorcontrib><title>ANNSTLF-a neural-network-based electric load forecasting system</title><title>IEEE transactions on neural networks</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>A key component of the daily operation and planning activities of an electric utility is short-term load forecasting, i.e., the prediction of hourly loads (demand) for the next hour to several days out. The accuracy of such forecasts has significant economic impact for the utility. This paper describes a load forecasting system known as ANNSTLF (artificial neural-network short-term load forecaster) which has received wide acceptance by the electric utility industry and presently is being used by 32 utilities across the USA and Canada. ANNSTLF can consider the effect of temperature and relative humidity on the load. Besides its load forecasting engine, ANNSTLF contains forecasters that can generate the hourly temperature and relative humidity forecasts needed by the system. ANNSTLF is based on a multiple ANN strategy that captures various trends in the data. Both the first and the second generation of the load forecasting engine are discussed and compared. The building block of the forecasters is a multilayer perceptron trained with the error backpropagation learning rule. An adaptive scheme is employed to adjust the ANN weights during online forecasting. The forecasting models are site independent and only the number of hidden layer nodes of ANN's need to be adjusted for a new database. The results of testing the system on data from ten different utilities are reported.</description><subject>Atmospheric humidity</subject><subject>Backpropagation</subject><subject>Economic forecasting</subject><subject>Electric utilities</subject><subject>Engines</subject><subject>Humidity</subject><subject>Load forecasting</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Power industry</subject><subject>Predictive models</subject><subject>Temperature</subject><issn>1045-9227</issn><issn>1941-0093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqF0U1Lw0AQBuBFFFurB68eJCfFQ-rMfiYnKcWqUOrBeg6bzUSiaVN3U6T_3kiL3uxpBuaZ9_Iydo4wRIT01vChSlWS4AHrYyoxBkjFYbeDVHHKuemxkxDeAVAq0MeshwlXSiemz-5Gs9nLfDqJbbSktbd1vKT2q_EfcW4DFRHV5FpfuahubBGVjSdnQ1st36KwCS0tTtlRaetAZ7s5YK-T-_n4MZ4-PzyNR9PYSSXauCSjFWAigUgXDpQoRZrnqdCFAAnKGHLa2kIbQIMKc1sKQwVyQmmtdmLArre5K998rim02aIKjuraLqlZh8wIyRWqhHfy6l_JEyl0R_dDw6U0sD8RNRgl0XTwZgudb0LwVGYrXy2s32QI2U9TmeHZtqnOXu5C1_mCij-5q6YDF1tQEdHveff9DcOok84</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Khotanzad, A.</creator><creator>Afkhami-Rohani, R.</creator><creator>Tsun-Liang Lu</creator><creator>Abaye, A.</creator><creator>Davis, M.</creator><creator>Maratukulam, D.J.</creator><general>IEEE</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>1997</creationdate><title>ANNSTLF-a neural-network-based electric load forecasting system</title><author>Khotanzad, A. ; Afkhami-Rohani, R. ; Tsun-Liang Lu ; Abaye, A. ; Davis, M. ; Maratukulam, D.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-fe76501840ee6dc053f39bb936d3040577ec6aad67017151baf37ed12e14aa6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Atmospheric humidity</topic><topic>Backpropagation</topic><topic>Economic forecasting</topic><topic>Electric utilities</topic><topic>Engines</topic><topic>Humidity</topic><topic>Load forecasting</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Power industry</topic><topic>Predictive models</topic><topic>Temperature</topic><toplevel>online_resources</toplevel><creatorcontrib>Khotanzad, A.</creatorcontrib><creatorcontrib>Afkhami-Rohani, R.</creatorcontrib><creatorcontrib>Tsun-Liang Lu</creatorcontrib><creatorcontrib>Abaye, A.</creatorcontrib><creatorcontrib>Davis, M.</creatorcontrib><creatorcontrib>Maratukulam, D.J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khotanzad, A.</au><au>Afkhami-Rohani, R.</au><au>Tsun-Liang Lu</au><au>Abaye, A.</au><au>Davis, M.</au><au>Maratukulam, D.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ANNSTLF-a neural-network-based electric load forecasting system</atitle><jtitle>IEEE transactions on neural networks</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>1997</date><risdate>1997</risdate><volume>8</volume><issue>4</issue><spage>835</spage><epage>846</epage><pages>835-846</pages><issn>1045-9227</issn><eissn>1941-0093</eissn><coden>ITNNEP</coden><abstract>A key component of the daily operation and planning activities of an electric utility is short-term load forecasting, i.e., the prediction of hourly loads (demand) for the next hour to several days out. The accuracy of such forecasts has significant economic impact for the utility. This paper describes a load forecasting system known as ANNSTLF (artificial neural-network short-term load forecaster) which has received wide acceptance by the electric utility industry and presently is being used by 32 utilities across the USA and Canada. ANNSTLF can consider the effect of temperature and relative humidity on the load. Besides its load forecasting engine, ANNSTLF contains forecasters that can generate the hourly temperature and relative humidity forecasts needed by the system. ANNSTLF is based on a multiple ANN strategy that captures various trends in the data. Both the first and the second generation of the load forecasting engine are discussed and compared. The building block of the forecasters is a multilayer perceptron trained with the error backpropagation learning rule. An adaptive scheme is employed to adjust the ANN weights during online forecasting. The forecasting models are site independent and only the number of hidden layer nodes of ANN's need to be adjusted for a new database. The results of testing the system on data from ten different utilities are reported.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18255687</pmid><doi>10.1109/72.595881</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1045-9227 |
ispartof | IEEE transactions on neural networks, 1997, Vol.8 (4), p.835-846 |
issn | 1045-9227 1941-0093 |
language | eng |
recordid | cdi_proquest_miscellaneous_28436515 |
source | IEEE Xplore (Online service) |
subjects | Atmospheric humidity Backpropagation Economic forecasting Electric utilities Engines Humidity Load forecasting Multilayer perceptrons Neural networks Power industry Predictive models Temperature |
title | ANNSTLF-a neural-network-based electric load forecasting system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T21%3A41%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ANNSTLF-a%20neural-network-based%20electric%20load%20forecasting%20system&rft.jtitle=IEEE%20transactions%20on%20neural%20networks&rft.au=Khotanzad,%20A.&rft.date=1997&rft.volume=8&rft.issue=4&rft.spage=835&rft.epage=846&rft.pages=835-846&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/72.595881&rft_dat=%3Cproquest_RIE%3E28436515%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16075417&rft_id=info:pmid/18255687&rft_ieee_id=595881&rfr_iscdi=true |