ANNSTLF-a neural-network-based electric load forecasting system

A key component of the daily operation and planning activities of an electric utility is short-term load forecasting, i.e., the prediction of hourly loads (demand) for the next hour to several days out. The accuracy of such forecasts has significant economic impact for the utility. This paper descri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural networks 1997, Vol.8 (4), p.835-846
Hauptverfasser: Khotanzad, A., Afkhami-Rohani, R., Tsun-Liang Lu, Abaye, A., Davis, M., Maratukulam, D.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 846
container_issue 4
container_start_page 835
container_title IEEE transactions on neural networks
container_volume 8
creator Khotanzad, A.
Afkhami-Rohani, R.
Tsun-Liang Lu
Abaye, A.
Davis, M.
Maratukulam, D.J.
description A key component of the daily operation and planning activities of an electric utility is short-term load forecasting, i.e., the prediction of hourly loads (demand) for the next hour to several days out. The accuracy of such forecasts has significant economic impact for the utility. This paper describes a load forecasting system known as ANNSTLF (artificial neural-network short-term load forecaster) which has received wide acceptance by the electric utility industry and presently is being used by 32 utilities across the USA and Canada. ANNSTLF can consider the effect of temperature and relative humidity on the load. Besides its load forecasting engine, ANNSTLF contains forecasters that can generate the hourly temperature and relative humidity forecasts needed by the system. ANNSTLF is based on a multiple ANN strategy that captures various trends in the data. Both the first and the second generation of the load forecasting engine are discussed and compared. The building block of the forecasters is a multilayer perceptron trained with the error backpropagation learning rule. An adaptive scheme is employed to adjust the ANN weights during online forecasting. The forecasting models are site independent and only the number of hidden layer nodes of ANN's need to be adjusted for a new database. The results of testing the system on data from ten different utilities are reported.
doi_str_mv 10.1109/72.595881
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28436515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>595881</ieee_id><sourcerecordid>28436515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-fe76501840ee6dc053f39bb936d3040577ec6aad67017151baf37ed12e14aa6c3</originalsourceid><addsrcrecordid>eNqF0U1Lw0AQBuBFFFurB68eJCfFQ-rMfiYnKcWqUOrBeg6bzUSiaVN3U6T_3kiL3uxpBuaZ9_Iydo4wRIT01vChSlWS4AHrYyoxBkjFYbeDVHHKuemxkxDeAVAq0MeshwlXSiemz-5Gs9nLfDqJbbSktbd1vKT2q_EfcW4DFRHV5FpfuahubBGVjSdnQ1st36KwCS0tTtlRaetAZ7s5YK-T-_n4MZ4-PzyNR9PYSSXauCSjFWAigUgXDpQoRZrnqdCFAAnKGHLa2kIbQIMKc1sKQwVyQmmtdmLArre5K998rim02aIKjuraLqlZh8wIyRWqhHfy6l_JEyl0R_dDw6U0sD8RNRgl0XTwZgudb0LwVGYrXy2s32QI2U9TmeHZtqnOXu5C1_mCij-5q6YDF1tQEdHveff9DcOok84</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16075417</pqid></control><display><type>article</type><title>ANNSTLF-a neural-network-based electric load forecasting system</title><source>IEEE Xplore (Online service)</source><creator>Khotanzad, A. ; Afkhami-Rohani, R. ; Tsun-Liang Lu ; Abaye, A. ; Davis, M. ; Maratukulam, D.J.</creator><creatorcontrib>Khotanzad, A. ; Afkhami-Rohani, R. ; Tsun-Liang Lu ; Abaye, A. ; Davis, M. ; Maratukulam, D.J.</creatorcontrib><description>A key component of the daily operation and planning activities of an electric utility is short-term load forecasting, i.e., the prediction of hourly loads (demand) for the next hour to several days out. The accuracy of such forecasts has significant economic impact for the utility. This paper describes a load forecasting system known as ANNSTLF (artificial neural-network short-term load forecaster) which has received wide acceptance by the electric utility industry and presently is being used by 32 utilities across the USA and Canada. ANNSTLF can consider the effect of temperature and relative humidity on the load. Besides its load forecasting engine, ANNSTLF contains forecasters that can generate the hourly temperature and relative humidity forecasts needed by the system. ANNSTLF is based on a multiple ANN strategy that captures various trends in the data. Both the first and the second generation of the load forecasting engine are discussed and compared. The building block of the forecasters is a multilayer perceptron trained with the error backpropagation learning rule. An adaptive scheme is employed to adjust the ANN weights during online forecasting. The forecasting models are site independent and only the number of hidden layer nodes of ANN's need to be adjusted for a new database. The results of testing the system on data from ten different utilities are reported.</description><identifier>ISSN: 1045-9227</identifier><identifier>EISSN: 1941-0093</identifier><identifier>DOI: 10.1109/72.595881</identifier><identifier>PMID: 18255687</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Atmospheric humidity ; Backpropagation ; Economic forecasting ; Electric utilities ; Engines ; Humidity ; Load forecasting ; Multilayer perceptrons ; Neural networks ; Power industry ; Predictive models ; Temperature</subject><ispartof>IEEE transactions on neural networks, 1997, Vol.8 (4), p.835-846</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-fe76501840ee6dc053f39bb936d3040577ec6aad67017151baf37ed12e14aa6c3</citedby><cites>FETCH-LOGICAL-c453t-fe76501840ee6dc053f39bb936d3040577ec6aad67017151baf37ed12e14aa6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/595881$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/595881$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18255687$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khotanzad, A.</creatorcontrib><creatorcontrib>Afkhami-Rohani, R.</creatorcontrib><creatorcontrib>Tsun-Liang Lu</creatorcontrib><creatorcontrib>Abaye, A.</creatorcontrib><creatorcontrib>Davis, M.</creatorcontrib><creatorcontrib>Maratukulam, D.J.</creatorcontrib><title>ANNSTLF-a neural-network-based electric load forecasting system</title><title>IEEE transactions on neural networks</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>A key component of the daily operation and planning activities of an electric utility is short-term load forecasting, i.e., the prediction of hourly loads (demand) for the next hour to several days out. The accuracy of such forecasts has significant economic impact for the utility. This paper describes a load forecasting system known as ANNSTLF (artificial neural-network short-term load forecaster) which has received wide acceptance by the electric utility industry and presently is being used by 32 utilities across the USA and Canada. ANNSTLF can consider the effect of temperature and relative humidity on the load. Besides its load forecasting engine, ANNSTLF contains forecasters that can generate the hourly temperature and relative humidity forecasts needed by the system. ANNSTLF is based on a multiple ANN strategy that captures various trends in the data. Both the first and the second generation of the load forecasting engine are discussed and compared. The building block of the forecasters is a multilayer perceptron trained with the error backpropagation learning rule. An adaptive scheme is employed to adjust the ANN weights during online forecasting. The forecasting models are site independent and only the number of hidden layer nodes of ANN's need to be adjusted for a new database. The results of testing the system on data from ten different utilities are reported.</description><subject>Atmospheric humidity</subject><subject>Backpropagation</subject><subject>Economic forecasting</subject><subject>Electric utilities</subject><subject>Engines</subject><subject>Humidity</subject><subject>Load forecasting</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Power industry</subject><subject>Predictive models</subject><subject>Temperature</subject><issn>1045-9227</issn><issn>1941-0093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqF0U1Lw0AQBuBFFFurB68eJCfFQ-rMfiYnKcWqUOrBeg6bzUSiaVN3U6T_3kiL3uxpBuaZ9_Iydo4wRIT01vChSlWS4AHrYyoxBkjFYbeDVHHKuemxkxDeAVAq0MeshwlXSiemz-5Gs9nLfDqJbbSktbd1vKT2q_EfcW4DFRHV5FpfuahubBGVjSdnQ1st36KwCS0tTtlRaetAZ7s5YK-T-_n4MZ4-PzyNR9PYSSXauCSjFWAigUgXDpQoRZrnqdCFAAnKGHLa2kIbQIMKc1sKQwVyQmmtdmLArre5K998rim02aIKjuraLqlZh8wIyRWqhHfy6l_JEyl0R_dDw6U0sD8RNRgl0XTwZgudb0LwVGYrXy2s32QI2U9TmeHZtqnOXu5C1_mCij-5q6YDF1tQEdHveff9DcOok84</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Khotanzad, A.</creator><creator>Afkhami-Rohani, R.</creator><creator>Tsun-Liang Lu</creator><creator>Abaye, A.</creator><creator>Davis, M.</creator><creator>Maratukulam, D.J.</creator><general>IEEE</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>1997</creationdate><title>ANNSTLF-a neural-network-based electric load forecasting system</title><author>Khotanzad, A. ; Afkhami-Rohani, R. ; Tsun-Liang Lu ; Abaye, A. ; Davis, M. ; Maratukulam, D.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-fe76501840ee6dc053f39bb936d3040577ec6aad67017151baf37ed12e14aa6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Atmospheric humidity</topic><topic>Backpropagation</topic><topic>Economic forecasting</topic><topic>Electric utilities</topic><topic>Engines</topic><topic>Humidity</topic><topic>Load forecasting</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Power industry</topic><topic>Predictive models</topic><topic>Temperature</topic><toplevel>online_resources</toplevel><creatorcontrib>Khotanzad, A.</creatorcontrib><creatorcontrib>Afkhami-Rohani, R.</creatorcontrib><creatorcontrib>Tsun-Liang Lu</creatorcontrib><creatorcontrib>Abaye, A.</creatorcontrib><creatorcontrib>Davis, M.</creatorcontrib><creatorcontrib>Maratukulam, D.J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khotanzad, A.</au><au>Afkhami-Rohani, R.</au><au>Tsun-Liang Lu</au><au>Abaye, A.</au><au>Davis, M.</au><au>Maratukulam, D.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ANNSTLF-a neural-network-based electric load forecasting system</atitle><jtitle>IEEE transactions on neural networks</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>1997</date><risdate>1997</risdate><volume>8</volume><issue>4</issue><spage>835</spage><epage>846</epage><pages>835-846</pages><issn>1045-9227</issn><eissn>1941-0093</eissn><coden>ITNNEP</coden><abstract>A key component of the daily operation and planning activities of an electric utility is short-term load forecasting, i.e., the prediction of hourly loads (demand) for the next hour to several days out. The accuracy of such forecasts has significant economic impact for the utility. This paper describes a load forecasting system known as ANNSTLF (artificial neural-network short-term load forecaster) which has received wide acceptance by the electric utility industry and presently is being used by 32 utilities across the USA and Canada. ANNSTLF can consider the effect of temperature and relative humidity on the load. Besides its load forecasting engine, ANNSTLF contains forecasters that can generate the hourly temperature and relative humidity forecasts needed by the system. ANNSTLF is based on a multiple ANN strategy that captures various trends in the data. Both the first and the second generation of the load forecasting engine are discussed and compared. The building block of the forecasters is a multilayer perceptron trained with the error backpropagation learning rule. An adaptive scheme is employed to adjust the ANN weights during online forecasting. The forecasting models are site independent and only the number of hidden layer nodes of ANN's need to be adjusted for a new database. The results of testing the system on data from ten different utilities are reported.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18255687</pmid><doi>10.1109/72.595881</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9227
ispartof IEEE transactions on neural networks, 1997, Vol.8 (4), p.835-846
issn 1045-9227
1941-0093
language eng
recordid cdi_proquest_miscellaneous_28436515
source IEEE Xplore (Online service)
subjects Atmospheric humidity
Backpropagation
Economic forecasting
Electric utilities
Engines
Humidity
Load forecasting
Multilayer perceptrons
Neural networks
Power industry
Predictive models
Temperature
title ANNSTLF-a neural-network-based electric load forecasting system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T21%3A41%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ANNSTLF-a%20neural-network-based%20electric%20load%20forecasting%20system&rft.jtitle=IEEE%20transactions%20on%20neural%20networks&rft.au=Khotanzad,%20A.&rft.date=1997&rft.volume=8&rft.issue=4&rft.spage=835&rft.epage=846&rft.pages=835-846&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/72.595881&rft_dat=%3Cproquest_RIE%3E28436515%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16075417&rft_id=info:pmid/18255687&rft_ieee_id=595881&rfr_iscdi=true