ANNSTLF-a neural-network-based electric load forecasting system

A key component of the daily operation and planning activities of an electric utility is short-term load forecasting, i.e., the prediction of hourly loads (demand) for the next hour to several days out. The accuracy of such forecasts has significant economic impact for the utility. This paper descri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural networks 1997, Vol.8 (4), p.835-846
Hauptverfasser: Khotanzad, A., Afkhami-Rohani, R., Tsun-Liang Lu, Abaye, A., Davis, M., Maratukulam, D.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A key component of the daily operation and planning activities of an electric utility is short-term load forecasting, i.e., the prediction of hourly loads (demand) for the next hour to several days out. The accuracy of such forecasts has significant economic impact for the utility. This paper describes a load forecasting system known as ANNSTLF (artificial neural-network short-term load forecaster) which has received wide acceptance by the electric utility industry and presently is being used by 32 utilities across the USA and Canada. ANNSTLF can consider the effect of temperature and relative humidity on the load. Besides its load forecasting engine, ANNSTLF contains forecasters that can generate the hourly temperature and relative humidity forecasts needed by the system. ANNSTLF is based on a multiple ANN strategy that captures various trends in the data. Both the first and the second generation of the load forecasting engine are discussed and compared. The building block of the forecasters is a multilayer perceptron trained with the error backpropagation learning rule. An adaptive scheme is employed to adjust the ANN weights during online forecasting. The forecasting models are site independent and only the number of hidden layer nodes of ANN's need to be adjusted for a new database. The results of testing the system on data from ten different utilities are reported.
ISSN:1045-9227
1941-0093
DOI:10.1109/72.595881