Experimental study on gas and particle emission characteristics of carbon black oxidation process in the presence of water and catalysts
The study of oxidation characteristics of carbon black particle is the basis to investigate the regeneration process and characteristics of diesel particulate filter (DPF). Based on the fixed-bed test bench, the gas and particle emission characteristics of carbon black oxidation process in the prese...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2023-11, Vol.901, p.165748-165748, Article 165748 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The study of oxidation characteristics of carbon black particle is the basis to investigate the regeneration process and characteristics of diesel particulate filter (DPF). Based on the fixed-bed test bench, the gas and particle emission characteristics of carbon black oxidation process in the presence of water are investigated under different temperatures, Printex-U (PU) masses, and catalysts. The experimental results show that the rise of temperature and PU mass increases the emissions of CO, CO2 and the total average particle number (PN). The oxidation efficiency (η) increases with temperature, but decreases with PU mass. The addition of catalysts promotes PU oxidation, and reduces CO emission. Due to the influence of particle diffusion, CeO2 has slightly lower efficiency than Pt/Al2O3 in the same ratio (1:1), but it is beneficial to significantly reduce particle emission, especially as the ratio increases (1:5). Water decreases CO and the η in PU oxidation, and the negative impact is gradually reduced after 3 % water concentration; However, the PN significantly increases, and expands the particle size range, particularly at high temperature and adding Pt/Al2O3 (from about 10 nm to 6– 30 nm, and a large number of particles with 30– 100 nm are produced). Additionally, the CO2/CO ratio of carbon black oxidation gradually increases with water concentration. Controlling DPF regeneration needs to strike a balance between the benefits on increasing oxidation efficiency and the potential negatives on particulate and harmful gas emission.
[Display omitted]
•Water exhibits varying effects at different temperatures and PU masses.•High concentration of water reduces the negative impact on PU oxidation.•The catalysts decrease particle emission in the heating stage and reduce CO.•Explore the beneficial effects of catalyst types and ratios on emission. |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2023.165748 |