Water-soluble organic aerosols over South Asia – Seasonal changes and source characteristics
Water-soluble organic carbon (WSOC) has been identified as a key component in atmospheric aerosols due to its ability to act as cloud condensation nuclei (CCN) owing to their highly hygroscopic nature. This paper discusses about the spatio-temporal variability in WSOC mass concentration, sources (pr...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2023-11, Vol.900, p.165644-165644, Article 165644 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Water-soluble organic carbon (WSOC) has been identified as a key component in atmospheric aerosols due to its ability to act as cloud condensation nuclei (CCN) owing to their highly hygroscopic nature. This paper discusses about the spatio-temporal variability in WSOC mass concentration, sources (primary and secondary contributions), the role of long-range air-mass transport in modulating their abundance, at distinct sectors over South Asia. We found from our observations that, photochemical ageing of primary organic aerosols that are derived from biomass emissions, significantly contribute to the total WSOC budget over South Asia. The wide range of water-soluble compounds released by biomass burning can contribute directly to the WSOC fraction or undergo further atmospheric processing, such as oxidation or ageing, leading to the formation of additional WSOC. WSOC/OC (organic carbon) ratio and the correlation between the WSOC and secondary organic carbon (SOC) are used for assessing the contribution from secondary sources. The three different ratios are used to delineate different source processes; OC/EC (elemental carbon) for source identification, WSOC/OC for long-range atmospheric transport (ageing) and WSOC/SOC to understand the primary and secondary contribution of WSOC. The present investigation revealed that, the primary OC that have undergone significant chemical processing as a result of long-range transport have a substantial influence on WSOC formation over South Asia, especially in Indo Gangetic Plain outflow regions such as southern peninsular and adjacent marine regions. Overall, oxidation and ageing of primary organic aerosols emitted from biomass burning was found to serve as an important source of WSOC over South Asia.
[Display omitted]
•Comprehensive picture of the sources and characteristics of water-soluble organic carbon (WSOC) over South Asia.•Spatio-temporal variability in the characteristics of different sectors in continental and marine atmospheres.•The contributions of primary and secondary sources to WSOC were examined using typical ratios of carbonaceous components.•Long range transported and aged biomass emissions contribute significantly to WSOC over the Indian subcontinent. |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2023.165644 |