The radial growth of univalent functions
Let f( z) belong to the well-known class S of functions univalent in the unit disk. It is shown that, in a classical result of Spencer (Trans. Amer. Math. Soc. 48 (1940) 418), this lim-inf condition cannot be replaced by a lim-sup condition. There is a function f in S for which the set for which the...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2004-10, Vol.171 (1), p.27-37 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
f(
z) belong to the well-known class
S of functions univalent in the unit disk. It is shown that, in a classical result of Spencer (Trans. Amer. Math. Soc. 48 (1940) 418), this lim-inf condition cannot be replaced by a lim-sup condition. There is a function
f in
S for which the set for which the lim-sup is positive is uncountably dense in every interval and its complement is of Baire Category I. Such a function cannot be close-to-convex. |
---|---|
ISSN: | 0377-0427 1879-1778 |
DOI: | 10.1016/j.cam.2004.01.013 |