The radial growth of univalent functions

Let f( z) belong to the well-known class S of functions univalent in the unit disk. It is shown that, in a classical result of Spencer (Trans. Amer. Math. Soc. 48 (1940) 418), this lim-inf condition cannot be replaced by a lim-sup condition. There is a function f in S for which the set for which the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2004-10, Vol.171 (1), p.27-37
Hauptverfasser: Anderson, J.M., Hayman, W.K., Pommerenke, Ch
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let f( z) belong to the well-known class S of functions univalent in the unit disk. It is shown that, in a classical result of Spencer (Trans. Amer. Math. Soc. 48 (1940) 418), this lim-inf condition cannot be replaced by a lim-sup condition. There is a function f in S for which the set for which the lim-sup is positive is uncountably dense in every interval and its complement is of Baire Category I. Such a function cannot be close-to-convex.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2004.01.013